Calculus and Linear Algebra II

Quiz 2

Instructions:

- Do all the work on this quiz paper.
- Show your work, i.e., write down the steps of your solution cleanly and readable.
- Electronic devices and notes are not allowed.

Name: \qquad

Problem 1 [7 points]

(a) Let $f(x)$ be infinitely often differentiable at 0 . Write down the definition of the (infinite) Taylor series of f around 0 .
(b) Compute the Taylor series of $f(x)=\sin (x) e^{2 x}$ up to quadratic order (i.e., including the x^{2} term).
(c) Does the integral $\int_{-1}^{1} x^{-2} d x$ exist as an improper integral (or a sum of improper integrals)? If yes, what is its value? If no, explain why.

Problem 1 (extra space)

Problem 2 [8 points]

(a) For $f(x, y)=x^{2} y^{2}+\ln (x) \cos (y)$, compute the partial derivatives $\partial_{x} f$ and $\partial_{y} f$.
(b) Define what it means for a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ to be differentiable at $\vec{a} \in \mathbb{R}^{n}$.
(c) Suppose we have three functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given. Simplify $\vec{\nabla}(f g h)$ with the product rule.
(d) What is the differential $d f$ of $f(x, y)=\sqrt{x^{2}+y^{2}}$?

Problem 2 (extra space)

