Calculus and Linear Algebra II

Quiz 2

Instructions:

- Do all the work on this quiz paper.
- Show your work, i.e., write down the steps of your solution cleanly and readable.
- Electronic devices and notes are not allowed.

Name: Solutions

Problem 1 [7 points]

(a) Let $f(x)$ be infinitely often differentiable at 0 . Write down the definition of the (infinite) Taylor series of f around 0 .

Solution:

The Taylor series f_{T} of f around 0 is

$$
f_{T}(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}
$$

(b) Compute the Taylor series of $f(x)=\sin (x) e^{2 x}$ up to quadratic order (i.e., including the x^{2} term).

Solution:

We consider the Taylor series around 0 . First, note that $f(0)=0$. Then we compute the first and second derivatives and evaluate them at 0 :

$$
\begin{aligned}
f^{\prime}(x) & =(\cos (x)+2 \sin (x)) e^{2 x}, \text { so } f^{\prime}(0)=1 \\
f^{\prime \prime}(x) & =(3 \sin (x)+4 \cos (x)) e^{2 x}, \text { so } f^{\prime \prime}(0)=4
\end{aligned}
$$

Therefore,

$$
f(x)=0+x+\frac{4}{2!} x^{2}+R_{2}(x)=x+2 x^{2}+R_{2}(x)
$$

with some higher order remainder term $R_{2}(x)$.
(c) Does the integral $\int_{-1}^{1} x^{-2} d x$ exist as an improper integral (or a sum of improper integrals)? If yes, what is its value? If no, explain why.

Solution:

This is a bit tricky. A naive computation gives

$$
\int_{-1}^{1} x^{-2} d x=-\left.x^{-1}\right|_{-1} ^{1}=-1-1=-2 .
$$

But this cannot be because the function x^{-2} is everywhere positive! Take a look at the picture on the next page.
The problem is that there is a singularity at $x=0$. So by definition of improper integrals,

$$
\int_{-1}^{1} x^{-2} d x=\int_{-1}^{0} x^{-2} d x+\int_{0}^{1} x^{-2} d x
$$

But the improper integrals on the right-hand side do not exist (they are infinite). So the whole integral does not exist.

Problem 1 (extra space)

Problem 2 [8 points]

(a) For $f(x, y)=x^{2} y^{2}+\ln (x) \cos (y)$, compute the partial derivatives $\partial_{x} f$ and $\partial_{y} f$.

Solution:

$$
\begin{aligned}
& \partial_{x} f=2 x y^{2}+\frac{1}{x} \cos (y) \\
& \partial_{y} f=2 x^{2} y-\ln (x) \sin (y)
\end{aligned}
$$

(b) Define what it means for a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ to be differentiable at $\vec{a} \in \mathbb{R}^{n}$.

Solution:

f is differentiable at \vec{a} if there is some $\vec{m} \in \mathbb{R}^{n}$ such that

$$
f(\vec{a}+\vec{h})=f(\vec{a})+\vec{m} \cdot \vec{h}+E(\vec{h})
$$

with $\frac{E(\vec{h})}{|\vec{h}|} \rightarrow 0$ as $\vec{h} \rightarrow 0$.
(c) Suppose we have three functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given. Simplify $\vec{\nabla}(f g h)$ with the product rule.

Solution:

We need to apply the product rule twice to find

$$
\vec{\nabla}(f g h)=(\vec{\nabla} f)(g h)+f(\vec{\nabla}(g h))=(\vec{\nabla} f) g h+f(\vec{\nabla} g) h+f g(\vec{\nabla} h) .
$$

(Note that the brackets here are usual brackets, and not arguments of functions.)
(d) What is the differential $d f$ of $f(x, y)=\sqrt{x^{2}+y^{2}}$?

Solution:

$$
d f=\left(\partial_{x} f\right) d x+\left(\partial_{y} f\right) d y=\frac{x d x+y d y}{\sqrt{x^{2}+y^{2}}}
$$

Problem 2 (extra space)

