Calculus and Linear Algebra II

Quiz 3

Instructions:

- Do all the work on this quiz paper.
- Show your work, i.e., write down the steps of your solution cleanly and readable.
- Electronic devices and notes are not allowed.

Name: Solutions

Problem 1 [7 points]

Let $f(x, y)=x \cos (y)-y^{2}$.
(a) Compute the directional derivative of f at $(0,0)$ in direction $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

Solution:

We find

$$
(\nabla f)(x, y)=\binom{\cos (y)}{-x \sin (y)-2 y} \quad \Rightarrow \quad(\nabla f)(0,0)=\binom{1}{0}
$$

Then the directional derivative at $(0,0)$ in direction $\vec{a}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is

$$
\left(D_{\vec{a}} f\right)(0,0)=(\nabla f)(0,0) \cdot \vec{a}=\binom{1}{0} \cdot\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=\frac{1}{\sqrt{2}} .
$$

(b) Now assume that $x(t)=t^{2}$ and $y(t)=t^{2}$. Compute $\frac{d}{d t} f(x(t), y(t))$.

Solution:

We can use the chain rule:

$$
\begin{aligned}
\frac{d}{d t} f(x(t), y(t)) & =\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} \\
& =\cos (y) 2 t+(-x \sin (y)-2 y) 2 t \\
& =2 t \cos \left(t^{2}\right)-2 t^{3} \sin \left(t^{2}\right)-4 t^{3}
\end{aligned}
$$

(c) Next, compute $\frac{d}{d x} \int_{0}^{\pi / 2} f(x, y) d y$.

Solution:

We can use the Leibniz integral rule:

$$
\frac{d}{d x} \int_{0}^{\pi / 2} f(x, y) d y=\int_{0}^{\pi / 2} \frac{\partial f(x, y)}{\partial x} d y=\int_{0}^{\pi / 2} \cos (y) d y=\left.\sin (y)\right|_{0} ^{\pi / 2}=1
$$

Problem 1 (extra space)

Problem 2 [8 points]

(a) Is the differential $d f=e^{-x+2 y^{2}}(-d x+4 y d y)$ exact or inexact?

Solution:

If $d f=A d x+B d y$, we need to check the condition $\frac{\partial A}{\partial y}=\frac{\partial B}{\partial x}$. Here, we find

$$
\begin{aligned}
\frac{\partial}{\partial y}\left(-e^{-x+2 y^{2}}\right) & =-4 y e^{-x+2 y^{2}} \\
\frac{\partial}{\partial x}\left(4 y e^{-x+2 y^{2}}\right) & =-4 y e^{-x+2 y^{2}}
\end{aligned}
$$

so the differential is indeed exact. In fact, $f=e^{-x+2 y^{2}}$ has the differential $d f$ above.
(b) List what different types of critical points there are for a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Solution:

The critical points can be

- maxima (local or global)
- minima (local or global)
- saddle points
- degenerate points
- bonus point if you mention monkey saddle
(c) Find all critical points of $f(x, y)=e^{x^{2}-y^{2}}$. What kind of critical points are they? (Try to answer by thinking about what this function looks like.)

Solution:

We have to check the condition $\nabla f=0$. We find

$$
(\nabla f)(x, y)=\binom{2 x}{-2 y} e^{x^{2}-y^{2}}
$$

This is zero only if $(x, y)=(0,0)$, i.e., this is the only critical point. Clearly, the function has a minimum if we go along the x-axis, and a maximum if we go along the y-axis, so the critical point is a saddle point.
(d) [Only if you are already done with the other problems and are bored.] Find all critical points of $f(x, y)=x y(12-3 x-4 y)$.

Solution:

Checking the condition $\nabla f=0$ yield the four critical points $(0,0),(4,0),(0,3),\left(\frac{4}{3}, 1\right)$.

Problem 2 (extra space)

