Calculus and Linear Algebra II

Quiz 4

Instructions:

- Do all the work on this quiz paper.
- Show your work, i.e., write down the steps of your solution cleanly and readable.
- Electronic devices and notes are not allowed.

Name: \qquad

Problem 1 [8 points]

Let $f(x, y)=1+x y$. Using the method of Lagrange multipliers, find the critical points of f on the unit circle, i.e., under the constraint $G(x, y)=x^{2}+y^{2}-1=0$. (You do not need to check whether they are maxima or minima or neither, but you can try to find out if time is left.)

Problem 1 (extra space)

Problem 2 [7 points]

(a) Let

$$
\vec{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto \vec{f}(x, y)=\left(\begin{array}{c}
x^{2} y \\
\sin (x) \\
e^{x+y}
\end{array}\right)
$$

Determine the Jacobian matrix of \vec{f}.
(b) Let

$$
\vec{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},(x, y, z) \mapsto \vec{f}(x, y, z)=\left(\begin{array}{c}
x^{2} y z \\
x^{2}+y^{2}+z^{2} \\
x^{2}+y^{2}+z^{2}
\end{array}\right)
$$

Determine curl \vec{f}. Then, compute $\operatorname{div}(\operatorname{curl} \vec{f})$.

Problem 2 (extra space)

