Calculus and Linear Algebra II

Quiz 5

Instructions:

- Do all the work on this quiz paper.
- Show your work, i.e., write down the steps of your solution cleanly and readable.
- Electronic devices and notes are not allowed.

Name: Solutions

Problem 1 [8 points]

Find the solution to the first-order ordinary differential equation $\frac{d y}{d x}=\lambda \sqrt{y}$ for any $\lambda>0$ using separation of variables (it is ok to only find $y(x)$ for $x>0$). Write down your solution using the general initial data $y(0)=y_{0} \geq 0$.

Solution:

We use separation of variables:

$$
\frac{d y}{\sqrt{y}}=\lambda d x \Rightarrow \int \frac{d y}{\sqrt{y}}=\int \lambda d x \Rightarrow 2 \sqrt{y}=\lambda x+C .
$$

So the general solution is

$$
y(x)=\left(\frac{\lambda}{2} x+\frac{1}{2} C\right)^{2}
$$

As a side note: Note that the constant C is determined by the initial conditions, so it does not matter if we use $\frac{1}{2} C$ or just replace this term by C. (We could have introduced another letter here to distinguish the two constants, but we don't bother.) So we could also just write

$$
y(x)=\left(\frac{\lambda}{2} x+C\right)^{2}
$$

Just to be sure, check that this function really satisfies the differential equation by computing the derivative.

Now we are given the value of the function at $x=0$. We compute

$$
y(0)=C^{2}
$$

This should be equal to y_{0}, so $C=\sqrt{y_{0}}$ and we can write our solution as

$$
y(x)=\left(\frac{\lambda}{2} x+\sqrt{y_{0}}\right)^{2}
$$

Problem 1 (extra space)

Problem 2 [7 points]

Compute the determinant of

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
1 & 3 & 2
\end{array}\right)
$$

Clearly state which property or method you use in each step of the computation.

Solution:

There are several ways to do this. Let us first compute it by bringing it into upper triangular form:

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
1 & 3 & 2
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 1 & -1
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & -3
\end{array}\right)=1 \times 1 \times(-3)=-3
$$

In the first step, we added (-1) times the first row to the third one, and in the second step we added (-1) times the second row to the third one. Then the determinant is the product of the diagonal values.

Alternatively, we could use a Laplace expansion. There is a zero in the first column, so let us choose an expansion using this first column. We find

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
1 & 3 & 2
\end{array}\right) & =(-1)^{1+1} \operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right)+0+(-1)^{1+3} \operatorname{det}\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right) \\
& =1 \times 2-2 \times 3+2 \times 2-3 \times 1 \\
& =-3
\end{aligned}
$$

Problem 2 (extra space)

