recall: for $f\left(x_{1}(t), \ldots, x_{n}(t)\right)$ the chain rule reads

$$
\frac{d f}{d t}=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \frac{d x_{i}}{d t}=(\vec{\nabla} f) \cdot \frac{d \vec{x}}{d t}
$$

Ex.: classical mechanics: $H(\vec{q}, \vec{p})=\frac{\vec{p}^{2}}{2}+V(\vec{q}) \quad$ potential energy \quad (mass $m=1$)
blinetic engr
$\vec{q}=$ particle position,$\vec{p}=\frac{d \vec{q}}{d t}$ momentum/ velocity

Newton's law reads $\frac{d \vec{p}}{d t}=-\vec{\nabla} V(\vec{q}) \quad$ (force $=$ mass. acceleration) chaimule

$$
\begin{aligned}
\frac{d H}{d t} & =\left(\vec{\nabla}_{\vec{q}} H\right) \cdot \frac{d \vec{q}^{d t}}{d t}+\left(\vec{\nabla}_{\vec{p}} H\right) \cdot \frac{d \vec{p}}{d t} \\
& =\left(\vec{\nabla}_{\vec{q}} H\right) \cdot \vec{p}+\left(\vec{\nabla}_{\vec{p}} H\right)\left(-\vec{\nabla}_{\vec{q}} V\left(\vec{q}^{q}\right)\right) \\
& =\left(\vec{\nabla}_{\underline{q}} H\right) \cdot\left(\vec{\nabla}_{\vec{p}} H\right)+\left(\vec{\nabla}_{\vec{p}} H\right)\left(-\nabla_{\vec{q}} H\right)
\end{aligned}
$$

$=0$, which is energy conservation!

Remark: If $x_{i}\left(t_{1}, \ldots, t_{m}\right)$, then we have $\frac{\partial f}{\partial t_{k}}=\sum_{i=1}^{k} \frac{\partial f}{\partial x_{i}} \frac{\partial x_{i}}{\partial t_{k}}$ next: a fen more topics/applications of many-vanuble derivatives

Al More on differentials
force $\vec{F}_{\text {(potential }} V$ are related by $\vec{F}=-\vec{\nabla} V$

- given V, we can directly compute \vec{F}
- but given \vec{F}_{1} can we find a V^{2} ?

In other words: given a differential $d V=\frac{\partial V}{\partial x_{1}} d x_{1}+\ldots+\frac{\partial V}{\partial x_{n}} d x_{n}$ I can we find V ?

If yes, we call $d V$ an exact differential, if no $d V$ is called inexact.

$$
\begin{aligned}
\text { Ex:: } \cdot d f=y_{1} d x+\underset{\omega_{2}}{x} d y & \Longrightarrow f(x, y)=x y+c \quad(c \in \mathbb{R} \text { some constant }) \\
\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y} & \Longrightarrow \text { exact differential }
\end{aligned}
$$

$$
\cdot d f={\underset{\text { U }}{\frac{\partial f}{\partial x}}}_{3 x}^{3} d x+\underset{\frac{\partial f}{\partial y}}{x} d y
$$

\longrightarrow need $f(x, y)=3 x y+g(y)$ for some fat. g

General answer: consider $\begin{aligned} d f & =\underbrace{A(x)}_{\underbrace{A(x, y)}_{\frac{\partial f}{\partial y}}} d x+\underbrace{B(x, y)}_{\partial^{\partial f}} d y \\ & =\frac{1}{\partial x}\end{aligned}$
$\Rightarrow \frac{\partial}{\partial y} \frac{\partial f}{\partial x}=\frac{\partial A}{\partial y}$ and $\frac{\partial}{\partial x} \frac{\partial f}{\partial y}=\frac{\partial B}{\partial x}$
but these are equal! (due to Clairavt/schuarz (see Session 5))
\Longrightarrow need $\frac{\partial A}{\partial x}=\frac{\partial B}{\partial x}$ as a necessary condition
It tums out (hare without proof) that this is also sufficient!

Generally: $d f=\sum_{i=1}^{n} g_{i}\left(x_{1}, \ldots, x_{n}\right) d x_{i}$ is exact

$$
\Leftrightarrow \quad \frac{\partial g_{i}}{\partial x_{k}}=\frac{\partial g_{k}}{\partial x_{i}} \quad \forall i, k=1, \ldots, n
$$

B) Taylor series
consider the function $g_{\substack{g_{\text {m }} \\ \text { onevanable }}}^{(t)} \underset{\text { many variables }}{(\stackrel{\rightharpoonup}{a}+t \vec{h})}$
What is the Taylor expansion of g around 0 at $t=1$?
(this will lead us to an expansion of $f(\vec{a}+\vec{h})$)

$$
\begin{aligned}
& \Rightarrow g_{\begin{array}{c}
g_{\text {chain rule }}
\end{array}}^{g_{=}^{\prime}(t)}=(\vec{\nabla} f)(\vec{a}+t \vec{h}) \cdot \underbrace{\frac{d(\vec{a}+t \vec{h})}{d t}}_{=\vec{h}}=\underbrace{\vec{h} \cdot(\vec{\nabla} f)(\vec{a}+t \vec{h})}_{=h_{1} \partial_{x_{n}} f+\ldots+h_{n} \partial_{x_{n}} f} \\
& =\left(h_{1} \partial_{x_{1}}+\ldots h_{n} \partial_{x_{n}}\right) f \\
& =(\vec{h} \cdot \vec{\nabla}) f(\vec{a}+t \vec{h}) \\
& \Rightarrow g^{\prime \prime}(t)=(\vec{h} \cdot \vec{\nabla})(\vec{h} \cdot \vec{\nabla}) f(\vec{a}+t \vec{h}) \\
& \Rightarrow g^{(k)}(t)=(\vec{h} \cdot \vec{\nabla})^{k} f(\vec{a}+t \vec{h}) \\
& \Longrightarrow \text { Taylor expansion } g(t)=\sum_{k=0}^{N} \frac{t^{k}}{k!} \underbrace{(k)}(0)+R_{N}(t) \\
& =(\vec{h} \cdot \vec{\nabla})^{k} f(\vec{a}) \\
& \Rightarrow g_{11}(1)=\sum_{k=0}^{N} \frac{(\vec{u} \cdot \vec{\nabla})^{k} f(\vec{a})}{k!}+R_{N}(1) \\
& f(\vec{a}+\vec{h})
\end{aligned}
$$

$\Longrightarrow f(\vec{a}+\vec{h})=\sum_{k=0}^{\infty} \frac{(\vec{h} \cdot \overrightarrow{0})^{k} f(\vec{a})}{k!}$ is the infinite Taylor series of f around \vec{a}

Note: there are expressions for the rest term, but they are a bit lengthy, so let's not write them down here.

Ex:: second-order expansion of $f\left(x_{1}, x_{2}\right)$ around $\vec{a}=\binom{a_{1}}{a_{2}}$ icall $\vec{h}=\binom{\Delta x}{\Delta y}$

$$
\begin{aligned}
& \Rightarrow f\left(\vec{a}+\binom{\Delta x}{\Delta y}\right)=f(\vec{a})+\underbrace{(\vec{h} \cdot \vec{\nabla})} f(\vec{a})+\frac{1}{2} \underbrace{(\vec{h} \cdot \vec{\nabla})(\vec{h} \cdot \vec{\nabla})} f(\vec{a})+\operatorname{Res} t \\
&=\binom{\Delta x}{\Delta_{y}}\binom{\partial_{x}}{\partial_{y}} f \\
&=\Delta x \frac{\partial f}{\partial x}(\vec{a})+\Delta y \frac{\partial f}{\partial y}(\vec{a})
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow f\left(\vec{a}+\binom{\Delta x}{\Delta y}\right)= & f(\vec{a})+\Delta x \frac{\partial f(\vec{a})}{\partial x}+\Delta y \frac{\partial f(\vec{a})}{\partial Y} \\
& +\frac{1}{2} \Delta x^{2} \frac{\partial^{2} f(\vec{a})}{\partial x^{2}}+\frac{1}{2} \Delta y^{2} \frac{\partial^{2} f(\vec{a})}{\partial y^{2}}+\Delta x \Delta y \frac{\partial^{2} f(\vec{a})}{\partial x \partial y}+\text { Rest }
\end{aligned}
$$

C) Change of variables
sometimes we would like to express functions $f\left(x_{11} x_{2}\right)$ in terms of different variables

Ex:: polar coordinates

instead of writing $f\left(x_{1}, x_{2}\right)$, we would like write $f(r, \varphi)$ with

$$
x_{1}=r \cos \varphi \quad, x_{2}=r \sin \varphi \quad(r \geqslant 0, \varphi \in[0,2 r))
$$

\Longrightarrow chain mile tells us that $\frac{\partial f}{\partial r}=\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial r}+\frac{\partial f}{\partial x_{2}} \frac{\partial x_{2}}{\partial r}$
e.g. 1 for $f\left(x_{1}, x_{2}\right)=\sqrt{x_{1}^{2}+x_{2}^{2}}$

$$
\Rightarrow f(r, \varphi)=\sqrt{(r \cos \varphi)^{2}+(r \sin \varphi)^{2}}=r \text {, Linear fat. in } r
$$

$\Longrightarrow \frac{\partial f}{\partial r}=1 \quad$ (much faster than computing a directional derivative)

