Supplement to the derivation of Logranges method:
For a C¹-function 6:TR⁻ → TR, consider the level sets
$$S_c = \{\vec{x} \in TR^{N}: b(\vec{x}) = c\}$$
, for
any CETR (all \vec{x} 's where 6 has the constant value C; geometrically for $b:TR^{2} \rightarrow TR$ this means
all \vec{x} where $b(\vec{x})$ has the same height w.r.t. the x-y-plane).
Now let $\vec{h}(t)$ be any curve in S_c ($\vec{h}(t) \in S_c$ $\forall t \in TR$).
Claim: $\vec{\nabla} 6(\vec{h}(t)) \cdot \frac{d\vec{h}}{dt} = 0$, i.e., $\vec{\nabla} 6$ is orthogonal to S_c (at any point))
Why? $b(\vec{h}(t)) = c$ $\forall t \in TR$ by definition (\vec{h} is a curve in S_c).

$$\implies 0 = \frac{d}{dt} \left(\left(\vec{h}(t) \right) = \vec{\nabla} \left(\left(\vec{h}(t) \right) \cdot \frac{d\vec{h}}{dt} \right) \right)$$

Example: see geogebra picture on the last page
(s ((x,y)= x²+y³+2), c=3 i.e., the level set is the intersection of 6 with the
generally:
$$\vec{\nabla} G = \begin{pmatrix} 2x \\ 3y^2 \end{pmatrix}$$

(s=3 at all three points
(s e.g., the points (1,0), (0,1), and $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ are in the level set,
there, we have $\vec{\nabla} G = \begin{pmatrix} 2 \\ 3y^2 \end{pmatrix}$, $\vec{\nabla} G = \begin{pmatrix} 2 \\ 3y^2 \end{pmatrix}$

In the picture one can clearly see how $\overrightarrow{P}6$ is orthogonal to the level set 6=3 at these points.

Back to vector-valued functions ...

Recall that for
$$\vec{f}: TR \to TR''$$
 we define the derivative component-nise: $\frac{d\vec{f}(t)}{dt} = \begin{pmatrix} \frac{df_n(t)}{dt} \\ \vdots \\ \frac{df_n(t)}{dt} \end{pmatrix}$

Note: integration is also defined component-unise:
$$\int \vec{\xi}(t) dt := \begin{pmatrix} \int \vec{\xi}(t) dt \\ \vdots \\ \int f_n(t) dt \end{pmatrix}$$

Number's law
Number's law
Number's law
Number's law
(mass n= 0)
force
 $\vec{\xi}(t) = particle position , \vec{p}(t) = \frac{d\vec{x}(t)}{dt}$ momentum (mess = 1)
 $\vec{\xi}(t) = particle position , \vec{p}(t) = \frac{d\vec{x}(t)}{dt}$ momentum (mess = 1)
 $\vec{\xi}(t) = cont. \vec{x}_{1|t|}$
 $= > \frac{d}{dt} (\vec{x}(t) \times \vec{p}(t)) = (\frac{d\vec{x}}{dt} \times \vec{p}) + (\vec{x} \times \vec{f}(t)\vec{x}) = \vec{O}$ (i.e., $\vec{x}(t) \times \vec{p}(t)$ does not change in
 $\vec{t} = \vec{p}$
 $= > \vec{x}(t) \times \vec{p}(t) = \vec{x}(0) \times \vec{p}(0)$ is a constant of metion, it is called angular momentum

But in the most general case, we need to consider

$$\vec{f}: TR^n \to TR^m$$
, $(x_{1,\dots,x_n}) \mapsto \vec{f}(\vec{x}) = \begin{pmatrix} f_n(x_{1,\dots,x_n}) \\ \vdots \\ f_m(x_{n,\dots,x_n}) \end{pmatrix}$

Ex.:
$$\overline{f}(x,y) = \begin{pmatrix} x^2 + y^4 - 4 \\ 2xy \end{pmatrix}$$
, see geogebra picture at the end of notes

Mext: What about derivatives of
$$\vec{f}: \mathbb{R}^{n} \to \mathbb{R}^{m}$$
?
Slightly abstract point of view:
• as usual, we need a linear approximation of \vec{f} near \vec{a}
· Def.: A map $\vec{L}:\mathbb{R}^{n} \to \mathbb{R}^{m}$ is called linear if $\vec{L}(a\vec{x}+b\vec{y}) = a\vec{L}(\vec{x})+b\vec{L}(\vec{y})$
for all $\vec{x}:\vec{y}\in\mathbb{R}^{n}$, $a_{1}b\in\mathbb{R}$.
Writing $\vec{x} = \sum_{j=1}^{n} \sum_{x} \sum_{j=1}^{j}$ use find: $(\vec{L}(\vec{x}))_{i} = (\vec{L}(\frac{\pi}{4}:x_{i}\vec{e}_{i}))_{i} \stackrel{i}{=} \sum_{j=1}^{n} \times_{j}(\vec{L}(\vec{e}_{j}))_{j}$
with vector in j-direction i the component
 $\vec{L}(\vec{x}) = \sum_{j=1}^{n} \underbrace{L_{i}(\vec{e}_{j}) \times_{j}}_{matrix} = i-th component$
 $\vec{L}(\vec{x}) = \sum_{j=1}^{n} \underbrace{L_{i}(\vec{e}_{j}) \times_{j}}_{matrix} = i-th component$
 \vec{e}_{i} the vector $\vec{L}(\vec{e}_{j})$

Thus, we know what differentiability means:
Definition: A function
$$\vec{f}:TR^{n} \rightarrow TR^{m}$$
 is called (totally) differentiable
at $\vec{a} \in TR^{n}$ if there is an mxn matrix $L_{\vec{a}}$ such that

$$\lim_{n \to 0} \frac{|\vec{f}(\vec{a} + \vec{n}) - \vec{f}(\vec{a}) - L_{\vec{a}} \vec{n}|}{|\vec{h}|} = 0.$$

$$l_{\vec{a}} = D\vec{f}(\vec{a}) = \vec{f}'(\vec{a}) \text{ is called (total) derivative of } \vec{f} \text{ at } \vec{a}.$$

As before, we can figure out what
$$L_{\vec{a}}$$
 is:
 $e_{\vec{q} \cdot i} choose \vec{h} = \begin{pmatrix} h_{i} \\ 0 \\ i \end{pmatrix} = h_{i}\vec{e}_{i}$ with $isay(h_{i} > 0$ i then $\lim_{h_{i} > 0} \frac{|\vec{t}(\vec{a}+\vec{h}) - \vec{t}(\vec{a}) - L_{\vec{a}}\vec{h}|}{h_{i}} = 0$
 $L_{\vec{a}}\vec{h} = \begin{pmatrix} L_{i} \cdots L_{in} \\ \vdots \\ L_{in} \cdots L_{in} \end{pmatrix} \begin{pmatrix} h_{i} \\ 0 \\ i \end{pmatrix} = h_{i} \begin{pmatrix} L_{in} \\ \vdots \\ L_{in} \end{pmatrix} = \sum_{\substack{h_{i} = 0}} \frac{\vec{t}(\vec{a}+\vec{h}) - \vec{t}(\vec{a}) - h_{i} \begin{pmatrix} L_{in} \\ \vdots \\ L_{in} \end{pmatrix}}{h_{i}} = \vec{O}_{i}$
 $i.e_{i} \begin{pmatrix} L_{in} \\ \vdots \\ L_{in} \end{pmatrix} = \lim_{h_{i} > 0} \frac{1}{h_{i}} \begin{pmatrix} f_{i}(\vec{a}+\vec{h},\vec{e}_{i}) - f_{i}(\vec{a}) \\ \vdots \\ f_{in}(\vec{a}+\vec{h},\vec{e}_{i}) - f_{in}(\vec{a}) \end{pmatrix} = \begin{pmatrix} \frac{\partial f_{i}}{\partial x_{i}} (\vec{a}) \\ \vdots \\ \frac{\partial f_{im}}{\partial x_{i}} (\vec{a}) \end{pmatrix}$
 $= \sum_{\substack{h_{i} = 0}} \sum_{\substack{h_{i} = 0} \sum_{\substack{h_{i} = 0}} \sum_{\substack{h_{i} = 0}} \sum_{\substack{h_{i} = 0} \sum_{\substack{h_{i} = 0}} \sum_{\substack{h_{i} = 0$

Theorem: If
$$\vec{f}: TR^{n} \to TR^{n}$$
 is differentiable at \vec{a} , the derivative at \vec{a} is the maximatrix
$$L_{\vec{a}} = \begin{pmatrix} \frac{\partial f_{n}}{\partial \times_{n}}(\vec{a}) & \dots & \frac{\partial f_{n}}{\partial \times_{n}}(\vec{a}) \\ \vdots & \vdots & \vdots \\ \frac{\partial f_{m}}{\partial \times_{n}}(\vec{a}) & \dots & \frac{\partial f_{m}}{\partial \times_{n}}(\vec{a}) \end{pmatrix}$$

$$(i.e., (L_{\vec{a}})_{ij} = \frac{\partial f_{i}}{\partial \times_{j}}(\vec{a}).$$

$$(\vec{a} = \int_{\vec{f}} (\vec{a}) \text{ is called Dacobian matrix } (of \vec{f} af \vec{a})$$

$$E_{X,:} \quad \overline{f}(x,y) = \begin{pmatrix} x^2 + 4 \\ 2 \times y \end{pmatrix} \quad from \text{ before}$$
$$= > \quad \int_{\overline{f}}^{z} (x,y) = \begin{pmatrix} \frac{\partial f_{x}}{\partial x} & \frac{\partial f_{x}}{\partial y} \\ \frac{\partial f_{z}}{\partial x} & \frac{\partial f_{z}}{\partial y} \end{pmatrix} = \begin{pmatrix} 2 \times -4y^{2} \\ 2 \times y \end{pmatrix}$$

Note: This is the most general notion of a derivative, covering any
$$\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$$
,
in particular the cases $N=1$ or $M=1$ we discussed before.

• There is also a chain rule:
$$(f g: TR^{k} \rightarrow TR^{n} and f: TR^{n} \rightarrow TR^{m} are differentiable,
then $D(f(g(\vec{x}))) = Df(g(\vec{x})) Dg(\vec{x})$. $(f \circ g: TR^{k} \rightarrow TR^{m}, \vec{x} \mapsto f(g(\vec{x})))$
 $m_{xn} matrix nxk matrix$
 $matrix product = mxk matrix$$$

• As before, there is the theorem that says that it all $\frac{\partial f_i}{\partial x_j}$ exist and are continuous, then \tilde{f} is continuously differentiable.

Use https://www.geogebra.org/3d for generating the plots.

 $G(x,y) = x^2 + y^3 + 2$, level set G(x,y) = 3, with three gradient vectors:

View from above to see orthogonality of nabla G and the level set:

Use https://www.geogebra.org/3d for generating the plots.

Vector field $f(x,y) = (x^2 - y^4 - 4, 2xy)$