Supplement to the derivation of Lagronges method:
For a C^{1}-function $G: \mathbb{R}^{n} \rightarrow \mathbb{R}_{1}$ consider the level sets $S_{c}=\left\{\vec{x} \in \mathbb{R}^{n}: G(\vec{x})=c\right\}$, for any $c \in \mathbb{R}\left(a l l \vec{x}^{\prime} s\right.$ where G has the constant vale $C i$ geometrically for $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$ this means all \vec{x} where $G(\vec{x})$ has the same height w.r.t. the $x-y$-plane $)$.
Now let $\vec{h}(t)$ be any curve in $S_{c}\left(\vec{h}(t) \in S_{c} \forall t \in \mathbb{R}\right)$.
Claim: $\vec{\nabla} G(\vec{h}(t)) \cdot \frac{d \vec{h}}{d t}=0$, ie., $\vec{\nabla} G$ is orthogonal to S_{c} (at any point)
Why? $G(\bar{h}(t))=c \quad \forall t \in \mathbb{R}$ by definition ($h_{\text {is a carve in } S_{c} \text {). }}^{\text {. }}$

$$
\Rightarrow 0=\frac{d}{d t} G(\vec{h}(t))=\vec{\nabla} G(\vec{h}(t)) \cdot \frac{d \vec{h}}{d t}
$$

Example: see geogebra picture on the last page
$G G(x, y)=x^{2}+y^{3}+2 \quad, c=3$, ie., the level set is the intersection of 6 nth the

$$
z=3 \text {-plane }
$$

generally: $\vec{\nabla} G=\binom{2 x}{3 y^{2}}$
$6=3$ at all three points
Lse.g., the points $(1,0),(0,1)$, and $\left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt[3]{2}}\right)$ are in the level set, there, we have $\vec{\nabla} b(1,0)=\binom{2}{0}, \vec{\nabla} b(0,1)=\binom{0}{3}, \vec{\nabla} b\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt[3]{2}}\right)=\binom{2 / \sqrt{2}}{3 / \sqrt[3]{4}}$

In the picture one can clearly see how $\vec{\nabla} G$ is orthogonal to the level set $b=3$ at these points.

Back to vector-valued functions...
Recall that for $\vec{f}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ we define the derivative component-mise: $\frac{d \vec{f}(t)}{d t}=\left(\begin{array}{c}\frac{d f_{1}(t)}{d t} \\ \vdots \\ \frac{d f a t t)}{d t}\end{array}\right)$
Note: integration is also defined component-mise: $\int \vec{f}(t) d t:=\left(\begin{array}{c}S f_{1}(t) d t \\ \vdots \\ S f_{n}(t) d t\end{array}\right)$

$\vec{x}(t)=$ particle position, $\vec{p}(t)=\frac{d \vec{x}(t)}{d t}$ momentum (mass $\left.=1\right)$ $\vec{F}(\vec{x})=\operatorname{conct}, \frac{\vec{x}}{|\vec{x}|^{3}}$
$\Longrightarrow \vec{x}(t) \times \vec{p}(t)=\vec{x}(0) \times \vec{p}(0)$ is a constant of motion, it is called angular momentum
But in the most general case, we need to consider

$$
\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m},\left(x_{1} \ldots, x_{n}\right) \longmapsto \vec{f}(\vec{x})=\left(\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{11} \ldots, x_{n}\right)
\end{array}\right)
$$

Ex:: $\vec{f}(x, y)=\binom{x^{2}-y^{4}-4}{2 x y}$, see geogebra picture at the end of notes First, some teminology:

- a fat. $f: \mathbb{R} \rightarrow \mathbb{R}^{m}(m \geqslant 2)$ is called a curve in \mathbb{R}^{m} (e.j. particle trajectory)
- a fact. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (usually $n=3$) is called. a scalar field (e.g. . temperature)
- a fat. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ (usually $n=3 ; m \geqslant 2$) is called a vector field (e.g., electric field)

Next: What about derivatives of $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$?
Slightly abstract point of view:

- as usual, we need a linear approximation of \vec{f} near \vec{a}
- Def.: A map $\vec{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called linear if $\vec{L}(a \vec{x}+b \vec{y})=a \vec{L}(\vec{x})+b \vec{L}(\vec{y})$ for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}, a, b \in \mathbb{R}$.

$$
\begin{aligned}
& \text { of the vector } \\
& \stackrel{\rightharpoonup}{L}(\vec{x})_{\text {otherector }}=\sum_{j=1}^{n} \underbrace{L_{i}\left(\vec{e}_{j}\right)}_{\text {matrix }} x_{j} \\
& \text { of the vector } \vec{L}\left(e_{j}\right)
\end{aligned}
$$

\Rightarrow a linear map is represented by a matrix

Thus, we know what differentiability means:
Definition: A function $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called (totally) differentiable at $\vec{a} \in \mathbb{R}^{n}$ if there is an $m \times n$ matrix $L_{\vec{a}}$ such that

$$
\lim _{\vec{h} \rightarrow 0} \frac{\left|\vec{f}(\vec{a}+\vec{h})-\vec{f}(\vec{a})-L_{a} \vec{h}\right|}{|\vec{h}|}=0
$$

$l_{a}=D \vec{f}(\vec{a})=\vec{f}^{\prime}(\vec{a})$ is called (total) derivative of \vec{f} at \vec{a}.

As before, we can figure out what L_{a} is:

$$
\begin{aligned}
& \text { e.g. choose } \vec{h}=\left(\begin{array}{c}
h_{1} \\
0 \\
\vdots \\
0
\end{array}\right)=h_{1} \vec{e}_{1} \text { with, sari } h_{1}>0 \text { ithen } \lim _{h_{1} \rightarrow 0} \frac{\left|\vec{f}(\vec{a}+\vec{h})-\vec{f}(\vec{a})-L_{a} \vec{h}\right|}{h_{1}}=0 \\
& L_{\vec{a}} \vec{h}=\left(\begin{array}{ccc}
L_{11} & \ldots & L_{1 n} \\
\vdots & & \vdots \\
L_{m 1} & \ldots & L_{m n}
\end{array}\right)\left(\begin{array}{c}
h_{1} \\
0 \\
\vdots \\
0
\end{array}\right)=h_{1}\left(\begin{array}{c}
L_{11} \\
\vdots \\
L_{m 1}
\end{array}\right) \Longrightarrow \lim _{h_{1} \rightarrow 0} \frac{\vec{f}(\vec{a}+\vec{h})-\vec{f}(\mid \vec{a})-h_{1}\left(\begin{array}{c}
L_{11} \\
L_{m 1} \\
L_{1}
\end{array}\right)}{h_{1}}=\overrightarrow{0},
\end{aligned}
$$

recall def.

$$
\text { i.e. }\left(\begin{array}{c}
L_{11} \\
\vdots \\
L_{m 1}
\end{array}\right)=\lim _{h_{h} \rightarrow 0} \frac{1}{h_{1}}\left(\begin{array}{c}
f_{1}\left(\vec{a}+h_{1} \vec{a}_{1}\right)-f_{1}(\vec{a}) \\
\vdots \\
f_{m}\left(\vec{a}+h_{h_{1}}\right)-f_{m}(\vec{a})
\end{array}\right) \stackrel{\downarrow}{=}\left(\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{1}}(\vec{a}) \\
\vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\vec{a})
\end{array}\right)
$$

\Rightarrow generally $L_{i j}=\frac{\partial f_{i}}{\partial x_{j}}(\bar{a})$

Theorem: If $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at \vec{a}, the derivative at \vec{a} is the m xn matrix

$$
L_{\vec{a}}=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\vec{a}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\vec{a}) \\
\vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\vec{a}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\vec{a})
\end{array}\right) \text { ire., }\left(L_{\vec{a}}\right)_{i j}=\frac{\partial f_{i}}{\partial x_{j}}(\vec{a}) \text {. }
$$

$l_{\vec{a}}=J_{\vec{f}}(\vec{a})$ is called Jacobian matrix (of \vec{f} at \vec{a})

Ex:: $\vec{f}(x, y)=\binom{x^{2}-y^{4}-4}{2 x y}$ from before

$$
\Rightarrow J_{\vec{f}}\left(x_{1} y\right)=\left(\begin{array}{ll}
\frac{\partial \delta_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
2 x & -4 y^{3} \\
2 y & 2 x
\end{array}\right)
$$

Note: - This is the most general notion of a derivative, covering any $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, in particular the cases $n=1$ or $m=1$ we discussed before.

- There is also a chain rule: If $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are differentiable, then $D(f(g(\vec{x})))=\underbrace{D f(g(\vec{x}))}_{\text {man matrix }} \underbrace{\operatorname{Dg}(\vec{x})}_{\text {nook matrix }} . \quad\left(f \circ g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}, \vec{x} \mapsto f(g(\vec{x}))\right)$ matrix product $=m \times k$ matrix
- As before, there is the theorem that says that if all $\frac{\partial f_{i}}{\partial x_{j}}$ exist and are continuous, then \vec{f} is continuously differentiable.

Use https://www.geogebra.org/3d for generating the plots.
$G(x, y)=x^{2}+y^{3}+2$, level set $G(x, y)=3$, with three gradient vectors:

View from above to see orthogonality of nabla G and the level set:

Use https://www.geogebra.org/3d for generating the plots.

Vector field $f(x, y)=\left(x^{2}-y^{4}-4,2 x y\right)$

