note: take a look at the new HW sheet 5 for the role of determinants in many-dimensional integration
last few lectures: we have introduced the determinant extensively and have already seen some vice applications (linear independence, inverses, systems of linear equations). For the next fer classes we mill use determinants again every now and then, especially today.
4.3 Eigenvalues and Eigenvectors
let us consider the action of a matrix - or generally, a linear operator - on vectors again.
Take the example of a reflection across the diagonal:

What is the corresponding matrix? let us check how it acts on the basis vectors:
 - $\vec{e}_{2}=\binom{0}{1}$ is mapped to $\vec{a}_{1}=\binom{1}{0} \xrightarrow[\substack{a_{0}}]{\stackrel{\rightharpoonup}{a_{2}} \hat{x}}$ interchanges X and y

$$
\longrightarrow A\left(\begin{array}{l}
(x)=\binom{0}{1}\binom{x}{r}=\binom{y}{x} .
\end{array}\right.
$$

So the matrix should have \vec{e}_{2} as fist column and \vec{e}_{1} as second: $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
Now, note that there are a few vectors on which the matrix acts in a very simple way, namely that it doesn't change the vector expect for a scalar multiple. These are $\vec{v}_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}$ and $\vec{v}_{2}=\frac{1}{\sqrt{2}}\binom{-1}{1}$ (Get's choose them normalized), because

$$
A \vec{v}_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{1}=\frac{1}{\sqrt{2}}\binom{1}{1}=\vec{v}_{1} \text { and } A \vec{v}_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{\sqrt{2}}\binom{-1}{1}=\frac{1}{\sqrt{2}}\binom{1}{-1}=-\vec{v}_{2}
$$

So wouldn't it be better if we write our vectors in the basis $B^{\prime}=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ instead of $B=\left\{\vec{e}_{1} \vec{e}_{2}\right\}$? Then the form of the matrix would be ven simple.

Let's do this: Above we have computed that the map in the basis P^{\prime} has $\binom{1}{0}$ as first, and $\binom{0}{-1}$ as second column vector: $A_{81}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
 \vec{v}_{n} in the basis
Φ^{\prime} is just $1 \cdot \vec{v}_{1}+0 \cdot \vec{v}_{21} \quad \Gamma_{\text {recall }}:$ if $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is a basis we can mite any vector $\vec{v}_{\text {as }}$ $s_{0}\left(\vec{v}_{1}\right)_{g}=\binom{1}{0}$.
$\vec{v}=\sum_{i=1}^{n} \dot{c i v}_{i}$ for some mique coefficients $c_{i}, i=1, \ldots, n$.
We commonly write this as $\vec{v}=\left(\left.\begin{array}{l}a_{2} \\ a_{2} \\ c_{n} \\ i_{n}\end{array} \right\rvert\,\right.$. If the basis is the
$L^{\text {standard }}$ basis $\vec{e}_{1}=\binom{0}{\vdots}, \ldots, \vec{e}_{n}$, we leave the subscript B amer.
(Side note: Please recall from Calculus and linear Algebra I how to wite matrices and vectors in different bases.)
Conclusion $A_{\mathbb{Q}^{\prime}}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. This is such a simple matrix, because by construction it is diagonal. (And those are the nicest possible type of matrices.)
Today and later, we explore this idea further for general matrices, e.f.1

- How do we find vectors such as $\vec{v}_{1} \vec{v}_{2}$ for arbitrary matrices A ?
- Can we always find a basis in which a given matrix is diagonal?
-What can we use it for? (See video on class website for an "application" (i))
Let us introduce some names first:

Definition: Let A be a real $n \times n$ matrix. If $\vec{x} \in \mathbb{R}^{n}, \vec{x} \neq \overrightarrow{0}$ satisfies $A \vec{x}=\lambda \vec{x}$ for some $\lambda \in \mathbb{R}$, we call λ an eigenvalue of A, and \vec{x} an eigenvector (corresponding to λ).
Note:- "Eigen" is a German word (i)

- The eigenvectors are only determined up to a scalar multiple: If \vec{x} is an eigenvector corresponding to eigenvalue λ, then also $A(c \vec{x})=c A \vec{x}=c \lambda \vec{x}=\lambda(c \vec{x}) \forall c \in \mathbb{R}$, i.e., also $c \vec{x}$ for any $c \neq 0$ is an eigenvector. Usually it is most convenient to take eigenvectors normalized (but there might be linearly independent eigenvectors for the same eigenvalue i we mill discuss this more detailed (later).
- Eigenvalues and eigenvectors will come up again in AlL of your majors!

Now, how do we find eigenvalues and eigenvectors for a given matrix A ?
identity matrix
We need to satisfy $A \vec{x}=\lambda \vec{x}$, ie., $A \vec{x}-\lambda \vec{x}=\overrightarrow{0}$, i.e., $(A-\lambda 宀 \bar{I}) \vec{x}=0$. This is just a system of linear equations! It has the mique solution $\vec{x}=0$ if and only if $\operatorname{det}(A-\lambda I) \neq 0$. But we are looking for the opposite, namely non-zero solutions \vec{x}.
So we want $\operatorname{det}(A-\lambda I)=0>A \Leftrightarrow A-\lambda I$ singular $\Leftrightarrow \operatorname{rank}(A-\lambda I)<n \Leftrightarrow$ nullity $(A-\lambda I) \neq 0$
So we want $\underbrace{\operatorname{det}(A-\lambda I)}=0 . \Leftrightarrow$ vows linearly dependent \Leftrightarrow colvmus livery dependent
This is some polynomial in λ (of degree n), and we need to find it's zeroes.
For example, in the simple case $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ above, we find

$$
A-\lambda I=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)-\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right)=\left(\begin{array}{cc}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right) \text { and } \operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right)=\lambda^{2}-1
$$

This is zero for $\lambda= \pm 1$, as we found above.
Note: We know how to find zeroes of polynomials of degree 2, but for degrees 3 or higher this can become ven y hard or even impossible in general.

To summarize:

Definition: For $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$, we call $P(\lambda)=$ deft $(A-\lambda I)$ the charactenstic polynomial of A. The equation $\operatorname{det}(A-\lambda I)=0$ is called charactenstic equation.

Theorem: The eigenvalues λ of $A \in \mathbb{R}^{n \times n}$ are the zeroes of its charractenstic polynomial: $\operatorname{det}(A-\lambda I)=0$.

Ex:: Find the eigenvalues of $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 6 \\ 0 & 1 & 2\end{array}\right)$.
We compute the charactenstic polynomial:

$$
P(\lambda)=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & 1-\lambda & 6 \\
0 & 1 & 2-\lambda
\end{array}\right)=-\lambda(1-\lambda)(2-\lambda)+6 \lambda=-\lambda^{3}+3 \lambda^{2}+4 \lambda
$$

Now find the zeroes: $0=-\lambda^{3}+3 \lambda^{2}+4 \lambda=-\lambda\left(\lambda^{2}-3 \lambda-4\right)$

$$
\Rightarrow \lambda_{0}=0 \text { and } \lambda_{ \pm}=\frac{3}{2} \pm \sqrt{\frac{9}{4}+4}=\frac{3}{2} \pm \frac{5}{2} \Rightarrow \lambda_{+}=4, \lambda_{-}=-1 .
$$

The eigenvalues are 0,4 and -1.
What are the conerponding eigenvectors? We need to compute them separately for each eigenvalue:

$$
\begin{aligned}
\left(A-\lambda_{0} I\right) \vec{x}_{0}=\overrightarrow{0} & \Rightarrow\left[\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 6 \\
0 & 1 & 2
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right]\left(\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right)=\overrightarrow{0} \\
\Rightarrow \quad y_{0} & =0 \\
y_{0}+6 z_{0} & =0 \quad \Longrightarrow \quad y_{0}=0, z_{0}=0 \quad\left(x_{0} \text { free }\right) \\
y_{0}+2 z_{0} & =0
\end{aligned}
$$

$\Rightarrow \vec{x}_{0}=\left(\begin{array}{c}x_{0} \\ 0 \\ 0\end{array}\right)$ for any $x_{0} \neq 0$ are all the normalized eigenvectors corresponding to λ_{0}. $\vec{x}_{0}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ is the only nomalized eigenvector conespondiug to λ_{0}.

The other two:

$$
\begin{aligned}
& \left(A-\lambda_{+} I\right) \vec{x}_{+}=\overrightarrow{0} \Rightarrow\left(\begin{array}{ccc}
-4 & 1 & 0 \\
0 & 1-4 & 6 \\
0 & 1 & 2-4
\end{array}\right) \vec{x}_{+}=\overrightarrow{0}=\left(\begin{array}{ccc}
-4 & 1 & 0 \\
0 & -3 & 6 \\
0 & 1 & -2
\end{array}\right) \vec{x}_{+} \\
& \left.\Rightarrow \begin{array}{rl}
-4 x_{+}+Y_{+} \\
-3 Y_{+}+6 z_{+} & =0 \\
Y_{+}-2 z_{+} & =0
\end{array}\right\} \text { muctivh hing (ass raw by (-3), we see that both equations are the same }
\end{aligned}
$$ (as at least two of them should be o otherwise \vec{O} wald be the mique solution, meaning we wald have made a mistake).

$$
\Rightarrow Y_{+}=2 z_{+} \stackrel{\text { plowing strow }}{\Rightarrow}-4 x_{t}+2 z_{t}=0 \Rightarrow x_{t}=\frac{1}{2} z_{+}
$$

now we can choose, eeg. z, freely, and, if desired, determine it by normalization:

$$
\begin{aligned}
& \vec{x}_{t}=\left(\begin{array}{c}
\frac{1}{2} z_{+} \\
2 z_{+} \\
z_{+}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2} \\
2 \\
1
\end{array}\right) z_{+} \text {for any } z_{t} \neq 0 \text { are all eigenvectors conespanding to } \lambda_{t}=4 . \\
& \left|\vec{x}_{t}\right|=\sqrt{\frac{1}{4}+4+1} z_{t}=\frac{\sqrt{4}}{2} z_{t} \stackrel{!}{=} 1 \Rightarrow z_{t}=\frac{2}{\sqrt{21}}
\end{aligned}
$$

$\Rightarrow \vec{x}_{+}=\frac{2}{\sqrt{21}}\left(\begin{array}{c}\frac{1}{2} \\ 2 \\ 1\end{array}\right)$ is the normalized eigenvector
For $\lambda_{\text {_ one finds by a similar computation the corresponding nomalized eigenvector }}$

$$
\vec{x}_{-}=\frac{1}{\sqrt{19}}\left(\begin{array}{c}
3 \\
-3 \\
1
\end{array}\right) .
$$

Summary: $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 6 \\ 0 & 1 & 2\end{array}\right)$ has three eigenvalues $\lambda_{0}=0, \lambda_{t}=4, \lambda_{-}=-1$ and corresponding normalized eigenvectors $\vec{x}_{0}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \vec{x}_{t}=\frac{2}{\sqrt{21}}\left(\begin{array}{l}\frac{1}{2} \\ 2 \\ 1\end{array}\right), \vec{x}_{-}=\frac{1}{\sqrt{19}}\left(\begin{array}{c}3 \\ -3 \\ 1\end{array}\right)$.
As you can see, the computations can become lengthy (though not hard) already for 3×3 matrices. Luckily, we can always easily test if our computations were connect:

$$
\begin{aligned}
& A \vec{x}_{0}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 6 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\overrightarrow{0} \quad \sqrt{2} \\
& A \vec{x}_{+}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 6 \\
0 & 1 & 2
\end{array}\right) \frac{2}{\sqrt{21}}\left(\begin{array}{c}
\frac{1}{2} \\
2 \\
1
\end{array}\right)=\frac{2}{\sqrt{21}}\left(\begin{array}{c}
2 \\
2+6 \\
2+2
\end{array}\right)=4 \cdot \frac{2}{\sqrt{21}}\left(\begin{array}{c}
\frac{1}{2} \\
2 \\
1
\end{array}\right)=\lambda_{+} \vec{x}_{+} \\
& A \vec{x}_{-}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 6 \\
0 & 1 & 2
\end{array}\right) \frac{1}{\sqrt{19}}\left(\begin{array}{c}
3 \\
-3 \\
1
\end{array}\right)=\frac{1}{\sqrt{19}}\left(\begin{array}{c}
-3 \\
-3+6 \\
-3+2
\end{array}\right)=-1 \cdot \frac{1}{\sqrt{19}}\left(\begin{array}{c}
3 \\
-3 \\
1
\end{array}\right)=\lambda_{-} \vec{x}_{-}
\end{aligned}
$$

Summary: How to compute eigenvalues and vectors of an uxn matrix A ?

- Find the charactenstic polynomial $\operatorname{det}(A-\lambda I)$.
- The eigenvalues are the solution to the charactenstic equation $\operatorname{det}(A-\lambda I)=0$.
- For each eigenvalue, solve the system of linear equations $(A-\lambda I) \vec{x}_{\lambda}=\overrightarrow{0}_{\text {; all }}$ sch non-zero \vec{x}_{λ} are eigenvectors.

Next, we mill study eigenvakes and eigenvectors more systematically, eeg.:

- Do they always exist?
- How many are there?
- Things we can do with them

