4.5 Diagonalization

Let us come back to our original motivation. If possible, we would like to express a given matrix in a different basis, such that it has a very simple form, namely diagonal. In order to do that for an nxn matrix A, we need that A has n linearly independent eigenvectors. Egg. last time we proved that we always have that if all n eigenvalues are distinct (but this is not a necessary condition, egg. $1\left(\begin{array}{c}1 \\ 0\end{array} 1\right)$ has ont one eizenvalabe 1, but, ego.., $\binom{1}{0}$ and $\binom{0}{1}$ are two linearly independent eigenvectors).

So let us now assume that the uxn matrix A has eigenvakes $\lambda_{11} \ldots, \lambda_{n}$ and corresponding Linearly independent ii eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$.

Get us build a matrix with the eigenvectors as columns: $V=\left(\vec{v}_{1}\left|\vec{v}_{2}\right| \ldots \mid \vec{v}_{n}\right)$.

Then we find $A V=\left(A \vec{V}_{1}\left|A \vec{V}_{2}\right| \ldots \mid A \vec{v}_{n}\right) \quad$ (in components: $(A V)_{i j}=\sum_{k=1}^{n} A_{i k} V_{k j}$

$$
\begin{aligned}
& =\left(\lambda_{1} \vec{v}_{1}\left|\lambda_{2} \vec{v}_{2}\right| \ldots \mid \lambda_{n} \vec{v}_{n}\right) \\
& =\sum_{k=1}^{n} A_{i k}\left(\vec{v}_{j}\right)_{k} \\
& \left.=\left(A \vec{v}_{j}\right)_{i}=\lambda_{j}\left(\vec{l}_{j}\right)_{i}\right) \\
& =\left(\begin{array}{l|l|l|l}
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}
\end{array}\right) \underbrace{\left.\begin{array}{cccc}
\lambda_{1} & & 0 \\
& \lambda_{2} & & \\
0 & & \lambda_{n}
\end{array}\right)} \\
& =: \Lambda \begin{array}{c}
\text { matrix } \\
\text { zeroes othenise }
\end{array} \\
& =V \Lambda
\end{aligned}
$$

And we constructed V with linearly independent columns, so V has full rank $=n$, and it is thus invertible ($\exists V^{-1}$ s.t. $V^{-1} V=V V^{-1}=I$:identity).

Therefore, we could wite $A V=V \Lambda$ as $V^{-1} A V=\Lambda$.

This is called diagonalization of A.
We say V diagonalizes A.
Every matrix A for which this works is called diagonalizable, ie.:

Definition: A matrix A is called diagonalizable if there exists an invertible matrix V such that $V^{-1} A V$ is diagonal.

Note that the matrix V (isth foll rank) can be regarded as a change of basis.
Let us summanze our findings:
Theorem: $A n$ nxu matrix A is diagonalizable if and only if A has n linearly independent eigenvectors $\vec{v}_{n} \ldots \vec{v}_{n}$. In this case $\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \ddots \\ \lambda_{n}\end{array}\right)=V^{-1} A V$ and $V=\left(\vec{v}_{1}|\ldots| \vec{v}_{n}\right)$.

Equivalent formulation: A is diagonalizable if and our p if the sum of the geometric multiplicities is n (because: if the sm is not $=n$ there aren't n lin. Indef. iegennectors if the sm is n then we just chases some basis in each $\left.E_{\lambda}(A)\right)$. Since the sum of the algebraic multi tiplicities is by definition alvarss n we have:
A is diagonalizable if and ont if for all eigenvalues the algebraic equals the geometric multiplicity.

And we already know: If all eigenvalues of A are distinct, then A is diagonalizable.
(but not necessarily the other way around)
Examples (that we already discussed before):

- $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ has one eigenvalue $\lambda=1 \quad($ alg.mult. $=2)$ with $\left.E_{\lambda} \backslash A\right)=\mathbb{R}^{2}$, ie. geom. mull. $=2$. A is already diagonal, so it is of course diagonalizable
- $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ has two distinct eigenvalues: $\lambda_{ \pm}= \pm 1$. So it is diagonalizable, and we a heady computed that $V=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$. One easily computes that $V^{-1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ as well.

Check: $\begin{aligned} V^{-1} A V=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right) & =\underbrace{(1)}_{\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)} \downarrow \\ & =\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & \lambda_{-}\end{array}\right)\end{aligned}$

- $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 6 \\ 0 & 1 & 2\end{array}\right)$ has 3 distinct eigenvalues, so it is diegonalizable
- $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has one eigenvalue $\lambda=1$, but its geometric multiplicity is just 1 . So A does not have n linearly independent eigenvectors, so it is not diagonalizable.

Diagonalization has numerous applications in the sciences, as you will see in your major -related classes.
One simple application is talking powers of a diagonalizable matrix A :
G let $V^{-1} A V=\Lambda=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & 0 \\ 0 & \lambda_{n}\end{array}\right)$, then $A=V \Lambda V^{-1}$.

Then $A^{k}=\left(V \Lambda V^{-1}\right)^{k}=V \wedge \underbrace{V^{-1} V}_{=I} \wedge V^{-1} \ldots V \wedge V^{-1}=V \Lambda^{k} V^{-1}$, where

$$
\Lambda^{k}=\left(\begin{array}{ccc}
\lambda_{1} & 0 \\
0 & \ddots \\
0 & \lambda_{n}
\end{array}\right)^{k}=\left(\begin{array}{ccc}
\lambda_{1}^{k} & 0 \\
& \ddots & c^{k} \\
0 & & \lambda_{n}
\end{array}\right)
$$

So $A^{k}=V\left(\begin{array}{cc}\lambda_{1}^{k} & 0 \\ 0 & 0 \\ 0 & \lambda_{n}\end{array}\right) V^{-1}$ ieee., instead of multiplying a matrix k times (computationally vans costs if k or a are large), we only need to multiply three matrices to compute A^{k} !

So for a diagonalizable matrix. A we could even define $e^{A}=\exp (A)$ by its Taylor series:

$$
\begin{aligned}
& e^{A}:=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}=\sum_{k=0}^{\infty} \frac{\left(V \wedge V^{-1}\right)^{k}}{k!}=\sum_{k=0}^{\infty} \frac{V \Lambda^{k} V^{-1}}{k!}=V\left(\sum_{k=0}^{\infty} \frac{\Lambda^{k}}{k!}\right) V^{-1} \\
& =V\left(\sum_{k=0}^{\infty}\left(\begin{array}{llll}
\frac{\lambda_{1}}{k!} & & & \\
{ }^{k} & \frac{\lambda_{2}^{k}}{k!} & \\
& & \\
& & \frac{\lambda_{n}^{k}}{k!}
\end{array}\right)\right) V^{-1}=V\left(\begin{array}{llll}
e^{\lambda_{1}} & & \\
& e^{\lambda_{2}} & \\
& & \ddots & \\
& & & e^{\lambda_{n}}
\end{array}\right) V^{-1}
\end{aligned}
$$

