Let us continue our list from last time with two more types of matrices:
c) Unitary matrices

Recall that nomad matrices A can be diagonalized with orthonormal eigenvectors $\vec{v}_{1} \ldots, \vec{v}_{n}$, ie.,
 this is called "Kronecker delta"
$\Lambda=\left(\begin{array}{ccc}\lambda_{1} & 0 \\ 0 & 0 \\ 0 & \lambda_{n}\end{array}\right)$ with $\lambda_{11} \ldots \lambda_{n}$ the eigenvalues, and $V=\overline{\left.\vec{V}_{1}\left|\vec{V}_{2}\right| \ldots \mid \vec{V}_{n}\right)}$.
Let us compute V^{t} : We find $\left.V^{t}=\left(\begin{array}{c}\overrightarrow{\vec{V}}_{1}^{\top} \\ \overrightarrow{\vec{V}}_{2}^{\top} \\ \vdots \\ \overrightarrow{\vec{V}}_{n}^{\top}\end{array}\right)\right\} \begin{aligned} & \left.\text { matrix with row vectors } \overrightarrow{\vec{v}}_{1}^{\top}=\left(\left(\vec{v}_{1}\right)_{1} \ldots, \vec{v}_{n}\right)_{n}\right) \\ & \text { that are abs complex conjugated }\end{aligned}$
Then we find $V^{+} V=\left(\begin{array}{c}\overrightarrow{\vec{v}}^{\top} \\ \vdots \\ S_{\vec{v}}^{\top}\end{array}\right) \quad\left(\begin{array}{l}\vec{v}_{1}|\ldots| \vec{v}_{n}\end{array}\right)=\left(\begin{array}{cccc}\left\langle\vec{v}_{1}, \vec{v}_{n}\right\rangle & \left\langle\vec{v}_{1}, \vec{v}_{2}\right\rangle & \ldots & \left\langle\vec{v}_{1} \vec{v}_{n}\right\rangle \\ \left.\vec{v}_{v_{2}}, \vec{v}_{n}\right\rangle & \left\langle\vec{v}_{2}, \vec{v}_{2}\right\rangle & & \vdots \\ \vdots & & \ddots & \vdots \\ \left.c \vec{v}_{n} \vec{v}_{n}\right\rangle & \ldots & & \left\langle\vec{v}_{n}, \vec{v}_{n}\right\rangle\end{array}\right)$
because $\vec{v}_{n} \ldots \vec{v}_{n}$
$\Rightarrow V^{+} V={ }_{I}^{+}$. In the same way we find $V V^{+}=I$. So $V^{+}=V^{-1}$.
So this is avens special type of matrix, where the inverse is just the Hermitian adjoint, which can be ven y easily computed.
This makes this class of matrices so interesting that it has a name.

Definition: An $n \times n$ matrix $\underbrace{}_{\text {U }}$ (possibly with complex entries) is called mitany let vs always try to call mitany matrices U

Important properties of mitary matrices U :

- As we saw above, mitary matrices are exactly those that diagonalize normal matrices A : $\Lambda=U^{+} A U$.
- They presence lengths (such maps ore also called isometries):

$$
|u \vec{x}|^{2}=\left\langle\vec{x}_{1} u_{\vec{x}}\right\rangle=\langle\vec{x}, \underbrace{u^{\dagger} u \vec{x}}_{=I}\rangle=\left\langle\vec{x}_{1} \vec{x}\right\rangle=|\vec{x}|^{2} .
$$

And they preserve angles: $\left.\left.\left\langle u_{\vec{x}}, u_{\vec{p}}\right\rangle=c \stackrel{\rightharpoonup}{x}, u^{+} u \vec{p}\right\rangle=c \vec{x}, \vec{p}\right\rangle$

This is in fact equivalent to $u^{-1}=u^{+}$, and often taken as the definition of mitane.

- U is in particular normal, since $U^{+} U=I=U u^{+}$. Thus, U itself is also diagoungizable.

$$
1=\operatorname{det} I=\operatorname{det}\left(u^{t} u\right)=\left(\operatorname{det}^{\dagger}\right)(\operatorname{det} u)^{2}=(\operatorname{det} u)(\operatorname{det} U)=|\operatorname{det} u|^{2} \text {, so }|\operatorname{det} U|=1 \text {. }
$$

- What about the eigenvalues of U ? If \vec{x} is an eigenvector with eigenvalue λ_{1} we find
because ciganuectors are nonzero
Thus, $|\lambda|^{2}=1$, ie. $|\lambda|=1$. (Thus, it you remember complex numbers and Euler's formula, $\lambda=e^{i \varphi}$ for some $\varphi \in[0,2 r)$.)

Again, an application from my research field, quantum mechanics. There, particles are described by a so-called wave faction $\vec{\psi}$ that evolves in time ieee, we have $\vec{\psi}(t)$, where $t=$ time. $\vec{\psi}$ is an element of some vector spare (nhichis usually infinite-dimensional). Now $|\vec{\psi}|^{2}$ is the total probability to find a particle somewhere, so it should always be one. Thus, the time evolution of $\vec{\psi}(t)$ is described by a milan matrix: $\vec{\psi}(t)=u(t) \vec{\psi}(0)$, where $\vec{\psi}(0)$
is the initial condition. But $\vec{\psi}(t)$ should also be solution to a linear first-order equation. (linearity is the reason for Schrödingers' cat!) So $i \frac{d}{d t} \vec{\psi}(t)=H \vec{\psi}(t)$, where H is some matrix i this is called the Scluradiuger equation. The solution should be $\underset{\text { vector }}{\vec{\psi}(t)}=\sum_{\text {nation }}^{-i H t} \underset{\text { nestor }}{\vec{\psi}(0)}$. so we should find that $U(t)=e^{-i t t}$. The question is then what type of matrix $I t$ makes the matrix $e^{-i t t}$ unitary? The answer is that these are the Hemitian matrices:

A matrix U is mitany if and ont if it can be mitten as $e^{-i t t}$ with Hermitian H.
More examples in the exercises.
D) Orthogonal matrices

Again, we might want to specialize to matrices with real entries, ie., when $A^{+}=A^{\top}$.
Definition: A real $n \times n$ matrix Q is called orthogonal if $Q^{-1}=Q^{T}$.

So orthogonal matrices are special cases of mitany matrices (similar to how symmetric matrices were special cases of (Hermitian ones). So the remarks from C) still apply.

In particular we have that $\operatorname{det} Q= \pm 1$ and all eigenvalues equal ± 1.
Note:

- One can show that orthogonal matrices exactly describe rotations and reflections. This is one of the reasons that make them so interesting.
- They will also be important for matrix decompositions, as we will see shortly.
- Any real symmetric matrix A is diagonalized by an orthogonal matrix ii.e., $\underbrace{}_{\text {- }}=Q^{\top} A Q$. diagonal matrix

This concludes our discussion of eigenvalvestégenvectors. let me make one final remark.
We saw that diagonalizable matrices are very nice, because $A=V \wedge V^{-1}$. One question that we left open is what to do about matrices that cannot be diagonalized.
Is there some transformation that makes such matrices "almost diagonal("? There is, and it is called Jordan normal form.

The general result is that any matrix A can be written as $A=V J V^{-1}$, where J is of the form

ii., with all eigenvalues with
their multiplicity on the diagonal and possibly 1's on the diagonal right above. With such J's one can still do a lot, eeg., powers of A can still be computed relatively easily.

But a more thorough discussion of the Jordan normal form is beyond the scope of this class.

Summary of classes of matrices:
(Note: any un matrix has a Jordan normal for.)

Note: The overlap of Hermitian and unitary matrices are exactly the Hermitian matrices with eigenvahes ± 1.
4.7 Matrix Decompositions

In this chapter we consider useful mays how a matrix can be written as a product of other, simpler matrices. (We already saw one example: $A=V^{-1} \Lambda V$, with Λ diagonal.) These are called "matrix decompositions", or "matrix factorizations".
4.7.1 cu Decomposition

Let us consider a system of n linear equations with n mknowns:
$A \vec{x}=\vec{b}$, where A is an un matrix and $\vec{b} \in \mathbb{R}^{N}$.
Let us assume that A is invertible (aet $A \neq 0$) ie, there is a mique solution $\vec{x}=A^{-1} \vec{b}$.
Last semester you saw how to find solutions using Gaussian elimination. This could be formulated using type I, II, III row operations, which could be represented by matrix multiplication with invertible matrices T_{1}, T_{2}, T_{3}.

$\cdot T_{2}=\left(\begin{array}{lllll}1 & & & \\ & \ddots & & \\ & & & \\ & & & \\ & & & \ddots & \\ & & & \ddots\end{array}\right)=$ multiply a row by a constant λ_{1}
 column
e.g.. $\left(\begin{array}{ll}1 & 0 \\ \lambda & 1\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a & b \\ \lambda a+c & \lambda b+d\end{array}\right), \rightarrow \lambda$ first row added to second row $\left(\begin{array}{ll}1 & \lambda \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a+\lambda c & b+\lambda d \\ c & d\end{array}\right) \rightarrow \lambda \cdot$ second row added to first row $(\because-\vdots)\binom{x_{1}}{x_{n}}=\binom{\vdots}{\vdots}$
Then bringing the system $A \vec{x}=\vec{b}$ into upper triangular form ("forward elimination") can be
 each M_{i} is one of the operations above Writing $M=M_{N} M_{N-1} \cdots M_{1}$, we have $\mathscr{M A} \vec{x}=M \vec{b}$
in components imper triangular means $(M A)_{i j}=0$ for $i s j$ If we forget about \vec{x} and \vec{b} for a moment, we have shown

$$
M A=\text { upper thangelar }=U=\left(\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{14} \\
0 & u_{22} & \ddots & \vdots \\
0 & 0 & u_{33} & \vdots \\
i & \ddots & \ddots & u_{14} \\
0 & \ldots & 0 & u_{n 4}
\end{array}\right) .\left\{\begin{array}{l}
\text { If } A \text { is non-singular, ie., del } A \neq 0 \text {, } \\
\text { then all diagonal entries } u_{i i} \neq 0 \text {. }
\end{array}\right.
$$

But all type I, II, III operations can be reversed, meaning M_{N}, \ldots, M_{1} and thus $M_{\text {are }}$ invertible. So:

$$
U=M_{N} \cdots M_{1} A \Leftrightarrow \overbrace{M_{1}^{-1} \cdots M_{\mu}^{-1}}^{M^{-1}} U=A \quad\left(\Leftrightarrow M^{-1} U=A\right)
$$

Question: Can we say anything about the form of M^{-1} ?
Yes, but there is one subtlety concerning interchanging rows. Suppose the rows of A are already ordered in such a way that only type III operations are needed to bring A into upper triangular form.
E.g., for $A=\left(\begin{array}{lll}0 & a & b \\ 0 & c & d \\ e & 0 & 0\end{array}\right)$, abbcidie $\neq 0$, we first need to interchange rows 1 and 3 ; then we can bring the matrix into upper triangular form.
Recall that type III matrices are of the form $T_{3}=\left(\begin{array}{lll}1 & & \\ \lambda & 1\end{array}\right)$.
Now, $T_{3}^{-1}=\left(\begin{array}{ccc}1 & & \\ \ddots & \ddots & 1\end{array}\right)$ (can be easily checked).
$S_{0} T_{3}^{-1}$ is lower triangular. And the product of lower triangular matrices remains 6 war triangular.

So M^{-1} from above is lower triangular!
This is the LU decomposition: $A=L U$, with $U=$ upper triangular, $L=$ Cower triangular In order to formulate this as a theorem, we might have to reorder the rows first.

Theorem (LV Decomposition): let A be an invertible un matrix. Then we can decompose $P A=L U$, where L is a lower triangular matrix, U is an upper triangular matrix, and P is a matrix that permutes the rows of A.

Applications and examples: next time

