4.7.3 Singular Value Decomposition

Finally, bet us briefly discuss one of the most important matrix decompositions, both for theory and applications. It works for any $m \times n$ real or complex matrix. let us here just state the decomposition, and them find out how to compute it.

Theorem:
Any man matrix A has a singular value decomposition (SVD) $A=U \Sigma V^{t}$, where

- U is a milan $m \times m$ matrix,
- V is a mitty $u \times n$ matrix, and
- \sum is an $m \times n$ matrix with ont non-negative values $\sigma_{i}\left(\right.$ (ie., $\left.\sigma_{i} \geqslant 0\right)$ on the diagonal,

$$
\left.\Sigma=\left(\begin{array}{cc}
6_{1} & 0 \\
0 & 0 \\
0 & \sigma_{n}
\end{array}\right) \text { for } m=u .\right)
$$

The $6 i$ are called singular values of A, and they are miquely determined by A.

Now, let us assume $A=U \sum V^{+}$as above, and let us see how to find first \sum, and then $U_{\text {and }} V$. recall: $(A B)^{\dagger}=B^{+} A^{+}$
We have $A^{+} A=\left(u \Sigma v^{+}\right)^{+}\left(u \Sigma v^{+}\right) \stackrel{V}{=} \underbrace{\left.v^{+}\right)^{+}}_{=v} \Sigma^{+} \underbrace{u^{+} u \Sigma v^{+}}_{=I \text {, sine } u \text { mile ry }}=V \Sigma^{+} \Sigma v^{+}$,
and similarly $A A^{t}=\left(u \Sigma v^{t}\right)\left(u \Sigma v^{+}\right)^{t}=u \Sigma v^{t}\left(v^{+}\right)^{t} \Sigma^{+} u^{t}=u \Sigma \Sigma^{+} u^{t}$.

Here, $\Sigma^{+} \Sigma$ is an $n \times n$ matrix with $\sigma_{1}^{2}, \ldots, \sigma_{k}^{2}$ on the diagonal $(k=\min (m, n))$, and $\sum \Sigma^{+}$is an $m \times m$ matrix with $\sigma_{1}^{2}, \ldots, \sigma_{k}^{2}$ on the diagonal i all other matrix entries are 0 .
And $A^{+} A$ and $A A^{+}$are both Hemitian! So then can be diagonalized with milan matrices. The two equations above are exactly their diagonalization: $A^{+} A=V \Sigma^{+} \Sigma V^{+}$ - $A A^{+}=U \Sigma \Sigma^{+} U^{+}$.
$\Rightarrow \sigma_{1}^{2}, \ldots, \sigma_{k}^{2}$ are the eigenvalues of both $A^{+} A$ and $A A^{+}$i the larger of those two matrices has additionally $|m-n|$ eigenvalues 0 .
\Rightarrow The orthonormal eigenvectors of $A^{+} A$ are the colzas of V.
\Rightarrow The orthonomal eigenvectors of $A A^{+}$are the columns of U.

This is how the singular value decomposition can be computed.
Examples are a bit lengthy, since we have to diagonalize two matrices. Some simple examples are in the moodle exercises.

But one can easily check whether a given decomposition is an SVD: e.g. 1

$$
\underbrace{\left(\begin{array}{cc}
3 & 3 \\
-1 & 1
\end{array}\right)}_{A}=\underbrace{\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)}_{U} \underbrace{\left(\begin{array}{cc}
\sqrt{2} & 0 \\
0 & 3 \sqrt{2}
\end{array}\right)}_{\sum} \underbrace{\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)}_{V^{+}} \text {holds, and } U_{\text {and } V \text { are unitary, }}
$$

and \sum has positive values on the diagonal.

Thank you for a nice semester, good wack with all of your exams, and I'm looking forward too seeing you around and in other classes in the following semesters!

Don't forget to fill out the teaching evaluations!

