Moodle Exercise Set 1

Calculus and Linear Algebra II

Spring 2020

1. What is the value of $\binom{5}{3}$?
A. 10
B. 20
C. 120
D. $5 / 3$
2. What is the value of $\binom{6}{4}$?
A. 24
B. 15
C. 720
D. $3 / 2$
3. What is the coefficient of x^{6} in the expansion of $(1+x)^{10}$?
A. 10
B. $\binom{6}{10}$
C. $\binom{10}{4}$
D. $\binom{10}{5}$
4. What is the coefficient of $a^{6} b^{2}$ in the expansion of $(a+b)^{8}$?
A. 1
B. $\binom{8}{6}$
C. $\binom{6}{2}$
D. $\binom{8}{6}\binom{8}{2}$
5. What is the coefficient of α^{3} in the expansion of $\left(\alpha^{\frac{3}{2}}-1\right)^{15}$?
A. $-\binom{15}{13}$
B. $\binom{15}{2}$
C. $\binom{15}{\frac{3}{2}}$
D. $-\binom{15}{3}$
6. What is the coefficient of $\alpha^{4} \beta^{5}$ in the expansion of $\left(\alpha^{2}-\beta\right)^{7}$?
A. $\binom{7}{5}$
B. $-\binom{7}{2}$
C. $\binom{7}{4}$
D. $\binom{5}{4}$
7. Which of the following equals $\binom{15}{7}$?
A. $\binom{10}{7}+\binom{5}{7}$
B. $\binom{15}{6}$
C. $\binom{14}{7}+\binom{14}{6}$
D. The coefficient of x^{7} in $(1-x)^{15}$
8. Which of the following equals $\binom{23}{15}$?
A. $\binom{22}{15}+\binom{22}{12}$
B. $\binom{23}{7}$
C. $\binom{22}{15}+\binom{22}{7}$
D. $\binom{22}{7}+\binom{22}{8}$
9. Determine whether the series $1+0.4+0.16+0.064+\ldots$ is convergent or divergent. If it is convergent, what is the sum?
A. the series converges to $5 / 3$.
B. the series converges to $5 / 2$.
C. the series converges to 1.63
D. The series is divergent.
10. Determine whether the series $3+2+\frac{4}{3}+\frac{8}{9}+\ldots$ is convergent or divergent. If it is convergent, what is the sum?
A. the series converges to 9
B. the series converges to $15 / 2$
C. the series converges to 7.22
D. The series is divergent
11. Determine whether the series $3-4+\frac{16}{3}-\frac{64}{9}+\ldots$ is convergent or divergent. If it is convergent, what is the sum?
A. the series converges to -2.77
B. the series converges to $9 / 7$
C. the series converges to $-9 / 4$
D. The series is divergent
12. Determine whether the series $\sum_{k=1}^{\infty} \frac{10^{n}}{(-9)^{n-1}}$ is convergent or divergent. If it is convergent, what is the sum?
A. The series converges to -90 .
B. The series converges to 11.23 .
C. The series converges to $-100 / 9$.
D. The series is divergent.
13. Determine whether the series $\sum_{k=1}^{\infty} \frac{(-3)^{k-1}}{4^{k}}$ is convergent or divergent. If it is convergent, what is the sum?
A. The sum converges to $-1 / 3$.
B. The sum converges to $4 / 7$.
C. The sum converges to $1 / 7$.
D. The series is divergent.
14. Determine whether the series $\sum_{n=0}^{\infty} \frac{\pi^{n}}{3^{n+1}}$ is convergent or divergent. If it is convergent, what is the sum?
A. The series converges to $\frac{1}{3-\pi}$
B. The series converges to $\frac{3}{3-\pi}$
C. The series converges to $\frac{1}{\pi}$
D. The series is divergent.
15. Any real number with infinitely many non-zero digits after the decimal point can be written as a geometric sum. For instance,

$$
0 . \overline{3}=0.3333 \ldots=\sum_{k=1}^{\infty} 3 \cdot\left(\frac{1}{10}\right)^{k}
$$

What is $0 . \overline{2}=0.222 \ldots$ as a ratio of integers?
A. $20 / 9$
B. $11 / 50$
C. $1 / 5$
D. $2 / 9$
16. Any real number with infinitely many non-zero digits after the decimal point can be written as a geometric sum. For instance,

$$
0 . \overline{3}=0.3333 \ldots=\sum_{k=1}^{\infty} 3 \cdot\left(\frac{1}{10}\right)^{k}
$$

What is $0 . \overline{73}=0.737373 \ldots$ as a ratio of integers?
A. $73 / 99$
B. $73 / 100$
C. $722 / 333$
D. $25 / 33$
17. What is the radius of convergence ρ of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n^{3}}$? For what values of x does the series converge?
A. $\rho=1$ and the series converges for $x \in(-1,1)$.
B. $\rho=1 / 2$ and the series converges for $x \in(-1 / 2,1 / 2)$.
C. $\rho=1$ and the series converges for $x \in[-1,1]$.
D. $\rho=0$ and the series converges for $x=0$.
18. What is the radius of convergence ρ of the series $\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$? For what values of x does the series converge?
A. $\rho=1$ and the series converges for $x \in(-1,1)$.
B. $\rho=1$ and the series converges for $x \in[-1,1)$.
C. $\rho=1$ and the series converges for $x \in[-1,1]$.
D. $\rho=1$ and the series converges for $x \in(-1,1]$.
19. What is the radius of convergence ρ of the series $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n^{2}+1}$? For what values of x does the series converge?
A. $\rho=1$ and the series converges for $(-1,1)$.
B. $\rho=2$ and the series converges for $[-3,-1] \cup[1,3]$.
C. $\rho=1$ and the series converges for $[1,3]$.
D. $\rho=3$ and the series converges for $(-3,3)$.
20. What is the radius of convergence ρ of the series $\sum_{k=1}^{\infty} n!(2 x-1)^{n}$? For what values of x does the series converge?
A. $\rho=0$ and the series does not converge for any x.
B. $\rho=0$ and the series converges for $x=1 / 2$.
C. $\rho=\infty$ and the series converges for all x.
D. $\rho=0$ and the series converges for $x=0$.

