Moodle Exercise Set 1

Calculus and Linear Algebra II

Spring 2020

- What is the value of ⁵₃?
 A. 10 B. 20 C. 120 D. 5/3
- 2. What is the value of $\binom{6}{4}$? A. 24 B. 15 C. 720 D. 3/2
- 3. What is the coefficient of x^6 in the expansion of $(1+x)^{10}$? A. 10 B. $\binom{6}{10}$ C. $\binom{10}{4}$ D. $\binom{10}{5}$
- 4. What is the coefficient of a^6b^2 in the expansion of $(a+b)^8$? A. 1 B. $\binom{8}{6}$ C. $\binom{6}{2}$ D. $\binom{8}{6}\binom{8}{2}$
- 5. What is the coefficient of α^3 in the expansion of $(\alpha^{\frac{3}{2}} 1)^{15}$? A. $-\binom{15}{13}$ B. $\binom{15}{2}$ C. $\binom{15}{\frac{3}{2}}$ D. $-\binom{15}{3}$
- 6. What is the coefficient of $\alpha^4 \beta^5$ in the expansion of $(\alpha^2 \beta)^7$? A. $\binom{7}{5}$ B. $-\binom{7}{2}$ C. $\binom{7}{4}$ D. $\binom{5}{4}$
- 7. Which of the following equals $\binom{15}{7}$? A. $\binom{10}{7} + \binom{5}{7}$ B. $\binom{15}{6}$ C. $\binom{14}{7} + \binom{14}{6}$ D. The coefficient of x^7 in $(1-x)^{15}$
- 8. Which of the following equals $\binom{23}{15}$? A. $\binom{22}{15} + \binom{22}{12}$ B. $\binom{23}{7}$ C. $\binom{22}{15} + \binom{22}{7}$ D. $\binom{22}{7} + \binom{22}{8}$
- 9. Determine whether the series 1+0.4+0.16+0.064+... is convergent or divergent. If it is convergent, what is the sum?
 - A. the series converges to 5/3.
 - B. the series converges to 5/2.
 - C. the series converges to 1.63
 - D. The series is divergent.
- 10. Determine whether the series $3 + 2 + \frac{4}{3} + \frac{8}{9} + \ldots$ is convergent or divergent. If it is convergent, what is the sum?
 - A. the series converges to 9
 - B. the series converges to 15/2
 - C. the series converges to 7.22
 - D. The series is divergent
- 11. Determine whether the series $3 4 + \frac{16}{3} \frac{64}{9} + \dots$ is convergent or divergent. If it is convergent, what is the sum?
 - A. the series converges to -2.77
 - B. the series converges to 9/7
 - C. the series converges to -9/4

- D. The series is divergent
- 12. Determine whether the series $\sum_{k=1}^{\infty} \frac{10^n}{(-9)^{n-1}}$ is convergent or divergent. If it is convergent, what is the sum?
 - A. The series converges to -90.
 - B. The series converges to 11.23.
 - C. The series converges to -100/9.
 - D. The series is divergent.
- 13. Determine whether the series $\sum_{k=1}^{\infty} \frac{(-3)^{k-1}}{4^k}$ is convergent or divergent. If it is convergent, what is the sum?
 - A. The sum converges to -1/3.
 - B. The sum converges to 4/7.
 - C. The sum converges to 1/7.
 - D. The series is divergent.
- 14. Determine whether the series $\sum_{n=0}^{\infty} \frac{\pi^n}{3^{n+1}}$ is convergent or divergent. If it is convergent, what is the sum?
 - A. The series converges to $\frac{1}{3-\pi}$
 - B. The series converges to $\frac{3}{3-\pi}$
 - C. The series converges to $\frac{1}{\pi}$
 - D. The series is divergent.
- 15. Any real number with infinitely many non-zero digits after the decimal point can be written as a geometric sum. For instance,

$$0.\overline{3} = 0.3333\ldots = \sum_{k=1}^{\infty} 3 \cdot \left(\frac{1}{10}\right)^k.$$

What is $0.\overline{2} = 0.222...$ as a ratio of integers?

A. 20/9 B. 11/50 C. 1/5 D. 2/9

16. Any real number with infinitely many non-zero digits after the decimal point can be written as a geometric sum. For instance,

$$0.\overline{3} = 0.3333... = \sum_{k=1}^{\infty} 3 \cdot \left(\frac{1}{10}\right)^k.$$

What is $0.\overline{73} = 0.737373...$ as a ratio of integers? A. 73/99 B. 73/100 C. 722/333 D. 25/33

- 17. What is the radius of convergence ρ of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n^3}$? For what values of x does the series converge?
 - A. $\rho = 1$ and the series converges for $x \in (-1, 1)$.
 - B. $\rho = 1/2$ and the series converges for $x \in (-1/2, 1/2)$.
 - C. $\rho = 1$ and the series converges for $x \in [-1, 1]$.
 - D. $\rho = 0$ and the series converges for x = 0.
- 18. What is the radius of convergence ρ of the series $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$? For what values of x does the series converge?
 - A. $\rho = 1$ and the series converges for $x \in (-1, 1)$.
 - B. $\rho = 1$ and the series converges for $x \in [-1, 1)$.

- C. $\rho = 1$ and the series converges for $x \in [-1, 1]$.
- D. $\rho = 1$ and the series converges for $x \in (-1, 1]$.
- 19. What is the radius of convergence ρ of the series $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^2+1}$? For what values of x does the series converge?
 - A. $\rho = 1$ and the series converges for (-1, 1).
 - B. $\rho = 2$ and the series converges for $[-3, -1] \cup [1, 3]$.
 - C. $\rho = 1$ and the series converges for [1, 3].
 - D. $\rho = 3$ and the series converges for (-3, 3).
- 20. What is the radius of convergence ρ of the series $\sum_{k=1}^{\infty} n! (2x-1)^n$? For what values of x does the series converge?
 - A. $\rho = 0$ and the series does not converge for any x.
 - B. $\rho = 0$ and the series converges for x = 1/2.
 - C. $\rho = \infty$ and the series converges for all x.
 - D. $\rho = 0$ and the series converges for x = 0.