Moodle Exercise Set 2

Calculus and Linear Algebra II

Spring 2020

- 1. What is the *n*-th term in the Taylor series of $f(x) = \cos(x)$ centred at $b = \pi$?
 - A. $(-1)^{n+1} \frac{(x-\pi)^{2n}}{(2n)!}$ B. $(-1)^{n+1} \frac{x^{2n}}{(2n)!}$ C. $(-1)^{n+1} \frac{(x-\pi)^{2n+1}}{(2n+1)!}$ D. $(-1)^{n+1} \frac{x^{2n+1}}{(2n+1)!}$
- 2. What is the *n*-th term in the Taylor series of $f(x) = e^x$ centred at b = 3?
 - A. $\frac{e^3}{n!}(x-3)^n$ B. $\frac{e^3x^n}{n!}$ C. $\frac{x^n}{n!}$ D. $\frac{(x-3)^n}{n!}$
- 3. What are the first three non-zero terms in the Taylor series of $f(x) = e^{-x^2} \cos(x)$ centred at b = 0?
 - A. 1, $-\frac{3}{2}x^2$, $\frac{25}{24}x^4$ B. 1, $-x^2$, $\frac{1}{2}x^4$ C. 1, $-\frac{1}{2}x^2$, $\frac{1}{24}x^4$ D. 1, $\frac{x^4}{2}$, $\frac{x^8}{48}$
- 4. The hyperbolic sine is defined by $\sinh(x) = \frac{1}{2}(e^x e^{-x})$. What is the *n*-th term in the Taylor expansion of $\sinh(x)$ around b = 0?
 - A. $\frac{x^{2n+1}}{(2n+1)!}$ B. $\frac{x^{2n}}{(2n)!}$ C. $\frac{(-1)^n}{(2n+1)!}x^{2n+1}$ D. $\frac{(-1)^n}{(2n)!}x^{2n}$
- 5. The hyperbolic cosine is defined by $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$. What is the *n*-th term in the Taylor expansion of $\cosh(x)$ around b = 0?

A.
$$\frac{x^{2n+1}}{(2n+1)!}$$

B. $\frac{x^{2n}}{(2n)!}$
C. $\frac{(-1)^n}{(2n+1)!}x^{2n+1}$
D. $\frac{(-1)^n}{(2n)!}x^{2n}$

- 6. What is the value of $\sum_{k=1}^{\infty} \frac{k^2}{k!}$? (This exercise is slightly trickier than the rest. Hint: try to rewrite the sum as a Taylor series you are familiar with.)
 - A. e

B. 2eC. (e+1)(e-1)D. e^2

- 7. Let F_N be the N-th order Taylor polynomial of $f(x) = \sqrt[3]{x}$ at b = 8. How accurate is the approximation by F_2 when $7 \le x \le 9$?
 - A. The approximation is accurate to ≈ 0.4
 - B. The approximation is accurate to ≈ 0.04
 - C. The approximation is accurate to ≈ 0.004
 - D. The approximation is accurate to ≈ 0.0004
- 8. Let F_N be the N-th order Taylor polynomial of e^x centred at b = 0. What is the smallest value of N for which $F_N(1)$ approximates e to two decimal places?
 - A. N = 3B. N = 4C. N = 5D. N = 6
- 9. Use Newton's method on $x^2 a = 0$. What is x_{n+1} ?

A.
$$\frac{1}{2}\left(x_n + \frac{a}{x_n}\right)$$

B. $x_n - \frac{2x_n}{x_n^2 - a}$
C. $x_n + \frac{a}{x_n}$
D. $x_n - \frac{a}{x_n}$

10. Use Newton's method on $x^3 + x + 3 = 0$ to compute x_2 when the initial approximation is $x_1 = -1$.

- A. -5/4B. -3/2
- C. 1
- D. 3/4

11. Use Newton's method on $x^3 + 2x - 4 = 0$ to compute x_2 when the initial approximation is $x_1 = 1$.

- A. 6/5
- B. -1
- C. 4/5
- D. 1/5

12. Use Newton's method on $x^5 - x - 1 = 0$ to compute x_2 when the initial approximation is $x_1 = 1$.

- A. 5/4
- B. 1/4
- C. 3/4
- D. 1

13. Consider the integral $\int_{-\infty}^{-1} \frac{1}{\sqrt{2-x}} dx$. Does the integral converge? If yes, evaluate the integral.

- A. The integral converges to 0
- B. The integral converges to 1
- C. The integral converges to $1/\sqrt{2}$
- D. The integral diverges.

14. Consider the integral $\int_{-\infty}^{\infty} x e^{-x^2} dx$. Does the integral converge? If yes, evaluate the integral.

- A. The integral converges to 0
- B. The integral converges to \boldsymbol{e}
- C. The integral converges to 1/e
- D. The integral diverges

15. Consider the integral $\int_1^\infty \frac{\ln(x)}{x} dx$. Does the integral converge? If yes, evaluate the integral.

- A. The integral converges to 0
- B. The integral converges to $\frac{\ln(1+e)}{2}$
- C. The integral converges to e
- D. The integral diverges
- 16. Consider $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}$. Can we use the integral test here? If yes, use the integral test to determine whether the series converges.
 - A. The integral test cannot be used.
 - B. The integral test can be used and the series converges.
 - C. The integral test can be used and the series diverges.
 - D. The integral test can be used but is inconclusive.
- 17. Consider $\sum_{n=1}^{\infty} ne^{-n}$. Can we use the integral test here? If yes, use the integral test to determine whether the series converges.
 - A. The integral test cannot be used.
 - B. The integral test can be used and the series converges.
 - C. The integral test can be used and the series diverges.
 - D. The integral test can be used but is inconclusive.
- 18. Consider $1 + \frac{1}{8} + \frac{1}{27} + \frac{1}{64} + \cdots$ Can we use the integral test here? If yes, use the integral test to determine whether the series converges.
 - A. The integral test cannot be used.
 - B. The integral test can be used and the series converges.
 - C. The integral test can be used and the series diverges.
 - D. The integral test can be used but is inconclusive.
- 19. Consider $\sum_{n=1}^{\infty} \frac{1}{n^2+4}$. Can we use the integral test here? If yes, use the integral test to determine whether the series converges.
 - A. The integral test cannot be used.
 - B. The integral test can be used and the series converges.
 - C. The integral test can be used and the series diverges.
 - D. The integral test can be used but is inconclusive.
- 20. Consider $\sum_{n=2}^{\infty} \frac{1}{n \ln(n)}$. Use the integral test to determine if the series is convergent or divergent. If the corresponding integral converges, evaluate the integral.
 - A. The integral test cannot be used.
 - B. The integral test can be used and the series converges.
 - C. The integral test can be used and the series diverges.
 - D. The integral test can be used but is inconclusive.