Moodle Exercise Set 3

Calculus and Linear Algebra II

Spring 2020

- 1. What is the integral $\int_{-1}^{0} \frac{e^{\frac{1}{x}}}{x^3} dx$?
- 2. What is the integral $\int_0^2 x^2 \ln(x) dx$?
- 3. Let $f(x, y) = \frac{x-y}{x+y}$. What is $\frac{\partial f}{\partial x}$?
- 4. Let $z(x,y) = x^2 y^3$ and $x(s,t) = s \cos(t)$ and $y(s,t) = s \sin(t)$. Compute the partials $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
- 5. Let $z(x,y) = e^x \cos(y)$ and x(s,t) = st and $y(s,t) = \sqrt{s^2 + t^2}$. Compute the partials $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
- 6. Let $f(x, y, z) = \ln(x + 2y + 3z)$. What is $\frac{\partial f}{\partial z}$?
- 7. The total resistance R produced by three conductors with resistances R_1 , R_2 , R_3 connected in a parallel circuit is given by the formula

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

What is $\frac{\partial R}{\partial R_1}$?

- 8. The gas law for a fixed mass m of an ideal gas at absolute temperate T, pressure P, and volume V is PV = mRT, where R is a constant. What is the value of $T \cdot \frac{\partial P}{\partial T} \cdot \frac{\partial V}{\partial T}$?
- 9. The temperature (in Celsius) at a point (x, y, z) is given by $T(x, y, z) = 200e^{-x^2 3y^2 9z^2}$. What is the rate of change (i.e., the gradient) of temperature at (2, -1, 2)?
- 10. Suppose that over a region of space the electric potential V is given by $V(x, y, z) = 5x^2 3xy + xyz$. What is the rate of change (i.e., the gradient) of the potential at (3, 4, 5)?
- 11. What is the gradient of $f(x, y) = \frac{y^2}{x}$ at (2, 4)?
- 12. What is the gradient of $f(x, y, z) = \frac{xy+yz+xz}{\sqrt{x^2+y^2+z^2}}$ at (3, 6, -2)?
- 13. What is the gradient of $f(x, y, z) = xe^{y} \cos(z) z 1$ at (1, 0, 0)?
- 14. What is the equation of the tangent place to the surface defined by $f(x, y) = y \ln(x)$ at the point (1, 4)?
- 15. What is the equation of the tangent plane to the surface defined by $x^2 2y^2 + z^2 + yz = 2$ at (2, 1, -1)?
- 16. What is the differential of $f(x, y) = x^3 \ln(y^2)$?
- 17. What is the differential of $R(\alpha, \beta, \gamma) = \alpha \beta^2 \cos(\gamma)$?