Moodle Exercise Set 4

Calculus and Linear Algebra II

Spring 2020

1. Let $f(x, y)=1+2 x \sqrt{y}$. Find the directional derivative at $(3,4)$ in the direction $\vec{v}=(4,-3)$.
2. Let $f(x, y, z)=x e^{y}+y e^{z}+z e^{x}$. Find the directional derivative at $(0,0,0)$ in the direction $\vec{v}=(5,1,2)$.
3. Let $f(x, y, z)=(x+2 y+3 z)^{3 / 2}$. Find the directional derivative at $(1,1,2)$ in the direction $\vec{v}=$ $(0,2,-1)$.
4. Let $f(x, y)=\sqrt{x y}$. Find the directional derivative at $(2,8)$ in the direction of the point $(5,4)$.
5. Consider $f(x, y)=\sin (x y)$ at the point $(1,0)$. In which direction does f have the maximum rate of change?
6. Determine whether the differential $F=P d x+Q d y=e^{x} \sin (y) d x+e^{x} \cos (y) d x$ is exact. If the differential is inexact what is the difference $\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}$?
7. Determine whether the differential $F=P d x+Q d y=\left(y e^{x} \sin (y)\right) d x+\left(e^{x}+x \cos (y)\right) d y$ is exact. If the differential is inexact what is the difference $\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}$?
8. A force $F=\left(F_{x}, F_{y}\right)$ written as a differential $F=F_{x} d x+F_{y} d y$ is called conservative if there exists V such that $F=-d V$. When an object moves in a closed loop (i.e., the motion has the same start and end points) in a conservative force field, the net work done by the force is zero. Consider a planet moving around the gravitational influence of a star. What is the work done by the force field

$$
F=\frac{k x}{x^{2}+y^{2}} d x+\frac{k y}{x^{2}+y^{2}}
$$

when the planet finishes one revolution? Above, k is a constant.
9. Let $f(x, y)=e^{x^{2}+y}$. Find the second order Taylor polynomial that approximates f at $(0,0)$.
10. Let $f(x, y)=x \sin (x-y)$. Find the second order Taylor polynomial that approximates f at $(1,1)$.
11. Let f be a differentiable function of x and y and $g(u, v)=f\left(e^{u}+\sin (v), e^{u}+\cos (v)\right)$. Use the table of values below to find $\partial_{u} g(0,0)$ and $\partial_{v} g(0,0)$.

	f	g	$\partial_{x} f$	$\partial_{y} f$
$(0,0)$	3	6	4	8
$(1,2)$	6	3	2	5

12. Let

$$
f(x, y)=\frac{x y}{x^{2}+y^{2}}
$$

(Observe the similarity to the function from the bonus problem in Homework 2). First use the change of coordinates $x=r \cos (\theta)$ and $y=r \sin (\theta)$ and then compute $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$ when $(x, y) \neq 0$.
13. A spherical pendulum consists of a mass m attached to a string of length l fixed at the origin (in $\left.\mathbb{R}^{3}\right)$. The motion of the pendulum can be described by Cartesian coordinates $(x(t), y(t), z(t))$. The potential energy V and the kinetic energy T are given by

$$
\begin{aligned}
& V=m g z(t), \\
& T=\frac{m}{2}\left[\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}\right]
\end{aligned}
$$

where g is a constant. What is the difference $L=T-V$ of the kinetic energy and the potential energy in spherical coordinates? The coordinate transform is given by

$$
\begin{aligned}
& x=l \sin (\theta) \cos (\varphi), \\
& y=l \sin (\theta) \sin (\varphi), \\
& z=-l \cos (\theta) .
\end{aligned}
$$

Above l is the distance of the mass from the origin (assume that $\frac{d l}{d t}=0$) and θ is the angle with respect to the z-axis and φ the angle (on the $x y$-plane) with respect to the x-axis.
14. Compute the derivative $\frac{d}{d x} \int_{0}^{1}\left(2 t+x^{3}\right)^{2} d t$.
15. Compute the derivative $\frac{d}{d x} \int_{0}^{1} \frac{t^{x}-e^{t}}{\ln (t)} d t$ when $x>1$.

