Moodle Exercise Set 8

Calculus and Linear Algebra II

Spring 2020

1. Solve the differential equation $y^{\prime}=\left(1+y^{2}\right)\left(4 x^{3}+2 x\right)$.
2. Solve the differential equation $y^{\prime}+\frac{y}{x}=\cos \left(x^{2}\right)$.
3. Find the solution of the initial value problem $x^{2} y^{\prime}+x y=1$ for $x>0$ and $y(1)=2$.
4. Solve the differential equation $y^{\prime \prime}=-4 y$.
5. Solve the second order differential equation $x y^{\prime \prime}+2 y^{\prime}=12 x^{2}$.
6. A population is modelled by the differential equation $P^{\prime}=1.2 P\left(1-\frac{P}{4200}\right)$. For what initial values of P do we get equilibrium solutions?
7. Consider an electrical circuit that contains a battery, a resistor with resistance R ohms (Ω), an inductor of L henries (H), a battery of voltage E volts (V), and a switch. At time t, the battery produces a current of $I(t)$ amperes (A). The relationship between these quantities in the circuit is given by the differential equation

$$
L \frac{d I}{d t}+R I=E
$$

Suppose $R=12 \Omega, L=4 \mathrm{H}$, and $E=60 \mathrm{~V}$. Identify any equilibrium solutions for the current. Draw a direction field and determine which of the equilibrium solutions are stable. What can you say about the limiting value (i.e., $t \rightarrow \infty$) of the current?
8. A 4×4 invertible matrix A has determinant $\operatorname{det}(A)=\frac{1}{2}$. Find $\operatorname{det}(2 A), \operatorname{det}(-A), \operatorname{det}\left(A^{2}\right)$, and $\operatorname{det}\left(A^{-1}\right)$.
9. Find the determinant of the matrix

$$
Q_{\theta}=\left[\begin{array}{cc}
1-2 \cos ^{2}(\theta) & -2 \cos (\theta) \sin (\theta) \\
-2 \cos (\theta) \sin (\theta) & 1-2 \sin ^{2}(\theta)
\end{array}\right]
$$

10. A rotation about the y-axis by an angle θ in \mathbb{R}^{3} is described by the matrix

$$
R_{y}(\theta)=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right]
$$

What is $\operatorname{det}\left(R_{y}(\theta)\right)$?
11. Find the eigenvalues (with multiplicities) of the matrix

$$
M=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

12. Let A be an invertible 2×2 matrix with eigenvalue λ. Furthermore let μ be any real number. Find the eigenvalues of $B=\left(I+\mu A^{-1}\right)$ where I is the identity matrix.
13. Let $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$. What are the eigenvalues and eigenvectors of A^{2} ?
14. Find the eigenvalues and eigenvectors of the matrix

$$
S=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

15. Consider the matrix $A=\frac{1}{10}\left[\begin{array}{ll}8 & 3 \\ 2 & 7\end{array}\right]$. Diagonalize the matrix to find $\lim _{k \rightarrow \infty} A^{k}$.
