Moodle Exercise Set 8

Calculus and Linear Algebra II

Spring 2020

- 1. Solve the differential equation $y' = (1 + y^2)(4x^3 + 2x)$.
- 2. Solve the differential equation $y' + \frac{y}{x} = \cos(x^2)$.
- 3. Find the solution of the initial value problem $x^2y' + xy = 1$ for x > 0 and y(1) = 2.
- 4. Solve the differential equation y'' = -4y.
- 5. Solve the second order differential equation $xy'' + 2y' = 12x^2$.
- 6. A population is modelled by the differential equation $P' = 1.2P(1 \frac{P}{4200})$. For what initial values of P do we get equilibrium solutions?
- 7. Consider an electrical circuit that contains a battery, a resistor with resistance R ohms (Ω) , an inductor of L henries (H), a battery of voltage E volts (V), and a switch. At time t, the battery produces a current of I(t) amperes (A). The relationship between these quantities in the circuit is given by the differential equation

$$L\frac{dI}{dt} + RI = E.$$

Suppose $R = 12\Omega$, L = 4H, and E = 60V. Identify any equilibrium solutions for the current. Draw a direction field and determine which of the equilibrium solutions are stable. What can you say about the limiting value (i.e., $t \to \infty$) of the current?

- 8. A 4 × 4 invertible matrix A has determinant $det(A) = \frac{1}{2}$. Find $det(2A), det(-A), det(A^2)$, and $det(A^{-1})$.
- 9. Find the determinant of the matrix

$$Q_{\theta} = \begin{bmatrix} 1 - 2\cos^2(\theta) & -2\cos(\theta)\sin(\theta) \\ -2\cos(\theta)\sin(\theta) & 1 - 2\sin^2(\theta) \end{bmatrix}.$$

10. A rotation about the y-axis by an angle θ in \mathbb{R}^3 is described by the matrix

$$R_y(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}.$$

What is $\det(R_y(\theta))$?

11. Find the eigenvalues (with multiplicities) of the matrix

$$M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

- 12. Let A be an invertible 2×2 matrix with eigenvalue λ . Furthermore let μ be any real number. Find the eigenvalues of $B = (I + \mu A^{-1})$ where I is the identity matrix.
- 13. Let $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$. What are the eigenvalues and eigenvectors of A^2 ?

14. Find the eigenvalues and eigenvectors of the matrix

$$S = \begin{bmatrix} 1 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 1 \end{bmatrix}$$

15. Consider the matrix $A = \frac{1}{10} \begin{bmatrix} 8 & 3 \\ 2 & 7 \end{bmatrix}$. Diagonalize the matrix to find $\lim_{k \to \infty} A^k$.