Moodle Exercise Set 10

Calculus and Linear Algebra II

Spring 2020

1. Compute the inverse of the matrix

$$
H=\left[\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right]
$$

where a, b, c are arbitrary real numbers.
2. Compute the inverse of the matrix

$$
R_{\theta}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right]
$$

where θ is an arbitrary real number.
3. Use Cramer's rule to solve for y in

$$
A \vec{x}=\left[\begin{array}{lll}
2 & 6 & 2 \\
1 & 4 & 2 \\
5 & 9 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\vec{b}
$$

4. Use Cramer's rule to solve for y in

$$
\begin{aligned}
a x+b y+c z & =1 \\
d x+e y+f z & =0 \\
g x+h y+i z & =0 .
\end{aligned}
$$

You can assume that the relevant 3×3 matrix has non-zero determinant D.
5. Use Cramer's rule to solve for x_{1} in

$$
\begin{aligned}
2 x_{1}+x_{2} & =1 \\
x_{2}+2 x_{2}+x_{3} & =0 \\
x_{2}+2 x_{3} & =0 .
\end{aligned}
$$

6. An 5×5 matrix has eigenvalues $\lambda_{1}, \ldots, \lambda_{5}$. If $\lambda_{1}=2+i, \lambda_{2}=\frac{i}{\sqrt{2}}, \lambda_{3}=2$ then what are the values of λ_{4} and λ_{5} ?
7. Let A be an $n \times n$ matrix that has eigenvalues $1,3,5, \ldots, 2 n-1$. Compute $\operatorname{tr}(A)$ and $\operatorname{det}(A)$.
8. Let A be a matrix such that

$$
\operatorname{det}(A-\lambda I)=-\lambda^{3}(\lambda-1)(2 \lambda+1)^{2}
$$

Compute $\operatorname{tr}(A)$ and $\operatorname{det}(A)$.
9 . Let A be a 7×7 matrix such that

$$
\operatorname{det}(A-\lambda I)=(\lambda-2+i)(\lambda-i)(\lambda-\sqrt{2})^{2}(\lambda-1) q(\lambda)
$$

where $q(\lambda)$ is some polynomial. Compute $\operatorname{tr}(A) \operatorname{det}(A)$.
10. Consider the eigenvalues of the matrix

$$
S=\left[\begin{array}{llllll}
1 & 2 & 2 & 3 & 4 & 1 \\
2 & 4 & 3 & 5 & 5 & 7 \\
2 & 3 & 9 & 1 & 1 & 0 \\
3 & 5 & 1 & 0 & 1 & 2 \\
4 & 5 & 1 & 1 & 3 & 1 \\
1 & 7 & 0 & 2 & 1 & 8
\end{array}\right]
$$

How many eigenvalues of the matrix are not real?
11. Consider the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Compute the set of tuples $\left(\lambda, a_{\lambda}, g_{\lambda}\right)$ where λ is an eigenvalue, a_{λ} its algebraic multiplicity and g_{λ} is its geometric multiplicity.
12. Find the eigenvalues and the associated eigenvectors of the matrix

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

13. Find the eigenvalues and the associated eigenvectors of the matrix

$$
A=\left[\begin{array}{ccc}
7 & 0 & -3 \\
-9 & -2 & 3 \\
18 & 0 & -8
\end{array}\right]
$$

14. Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 8 \\
0 & 1
\end{array}\right]
$$

Compute the set of tuples $\left(\lambda, a_{\lambda}, g_{\lambda}\right)$ where λ is an eigenvalue, a_{λ} its algebraic multiplicity and g_{λ} is its geometric multiplicity.
15. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 3 & 0 \\
3 & 2 & 2
\end{array}\right]
$$

Compute the set of tuples $\left(\lambda, a_{\lambda}, g_{\lambda}\right)$ where λ is an eigenvalue, a_{λ} its algebraic multiplicity and g_{λ} is its geometric multiplicity.

