Moodle Exercise Set 11

Calculus and Linear Algebra II

Spring 2020

1. Is the matrix

$$
A=\left[\begin{array}{cc}
6 & -1 \\
2 & 3
\end{array}\right]
$$

diagonalizable?
2. Is the matrix

$$
A=\left[\begin{array}{ccc}
-2 & -4 & 2 \\
-2 & 1 & 2 \\
4 & 2 & 5
\end{array}\right]
$$

diagonalizable?
3. Let $0<\mu<1$ and suppose an $n \times n$ matrix B has characteristic equation

$$
\lambda(\lambda-\mu)\left(\lambda-\mu^{2}\right) \cdots\left(\lambda-\mu^{n-1}\right) .
$$

Is B diagonalizable?
4. Consider the vector space \mathcal{P}_{n} of polynomials of degree at most n and consider the linear map $D: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n}$ that maps each polynomial to its derivative. First compute the matrix of D in the standard basis $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ (you might want to refer to problem 5 in online exercise set 9). If $n>0$, is D diagonalizable?
5. Is the matrix

$$
B=\left[\begin{array}{ccc}
0 & -i & i \\
i & 0 & -i \\
-i & i & 0
\end{array}\right]
$$

diagonalizable?
6. Find all values of k that make the matrix

$$
A=\left[\begin{array}{ccc}
1 & k & 0 \\
0 & 1 & k \\
0 & 0 & 2
\end{array}\right]
$$

diagonalizable.
7. Consider the 2×2 matrix

$$
A=\left[\begin{array}{cc}
6 & -1 \\
2 & 3
\end{array}\right]
$$

Find a formula for A^{k}.
8. Suppose A is an $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Suppose that for all $k,\left|\lambda_{k}\right|<1$. Compute the limits $\lim _{p \rightarrow \infty} A^{p}$ and $\lim _{p \rightarrow \infty} \exp \left(A^{p}\right)$.
9. Recall that when x, y are real numbers, we have the identity $\exp (x) \cdot \exp (y)=\exp (x+y)$. In this exercise we will investigate whether this holds for matrices. Consider the matrices

$$
X=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \quad \text { and } Y=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

Compute $\exp (X) \cdot \exp (Y)$ and $\exp (X+Y)$.
10. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & -2-i & 4 \exp \left(i \frac{\pi}{4}\right) \\
1+i & i & 2-7 i
\end{array}\right]
$$

What is A^{\dagger} ?
11. A normal matrix U is called unitary if $U U^{\dagger}=I$. Is the matrix

$$
U=\frac{1}{2}\left[\begin{array}{ll}
1+i & 1-i \\
1-i & 1+i
\end{array}\right]
$$

normal and is it unitary?
12. A normal matrix U is called unitary if $U U^{\dagger}=I$. Is the matrix

$$
U=\left[\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right]
$$

normal and is it unitary?
13. Find the characteristic polynomial of the matrix

$$
H=\left[\begin{array}{ccc}
-1 & 1-2 i & 0 \\
1+2 i & 0 & -i \\
0 & i & 1
\end{array}\right]
$$

Plot the polynomial to determine the number of real roots.
14. A matrix H is called Hermitian if $H=H^{\dagger}$. A matrix A is called anti-Hermitian if $A=-A^{\dagger}$. It is possible to write any matrix as a sum of a Hermitian and an anti-Hermitian matrix. Let

$$
C=\left[\begin{array}{cc}
1 & -i \\
2 i & 3
\end{array}\right]
$$

and find a Hermitian matrix H and an anti-Hermitian matrix A such that $C=H+A$.
15. (Bonus problem) A graph is a mathematical structure consisting of a set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ of vertices and a set E of edges between these vertices. The adjacency matrix of a graph is a matrix A such that

$$
A_{i, j}= \begin{cases}1 & \text { there is an edge connecting } i \text { and } j \\ 0 & \text { otherwise }\end{cases}
$$

A walk of length k on a graph is a sequence of vertices $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}$ such that any two successive vertices have an edge connecting them. More precisely, for any $j, v_{i_{j}}$ and $v_{i_{j+1}}$ are connected. The total number of walks from vertex v_{i} to vertex v_{j} is given by the (i, j) entry of A^{k}. Consider a graph with three vertices $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ such that there are edges between v_{1} and v_{2}, v_{2} and v_{3}, and v_{1} and v_{3}. Find the number of walks of length $k=10$ starting at v_{1} and ending at v_{2}.

