Moodle Exercise Set 12

Calculus and Linear Algebra II

Spring 2020

1. Consider the matrices

$$
S=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 6 & 10 \\
1 & 4 & 10 & 20
\end{array}\right] \quad L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{array}\right] \quad U=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Check whether $S=L U$ is a valid $L U$ decomposition. If the decomposition is valid, then use L and U to compute $\operatorname{det}(S)$.
2. Compute the $L U$ decomposition of the matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

such that all diagonal entries of L are one. What are the diagonal entries of U ? What is the entry below the diagonal in L ?
3. Consider the matrix

$$
A=\left[\begin{array}{cccc}
2 & 0 & -3 & 1 \\
0 & 1 & 2 & 2 \\
-4 & 0 & 9 & 2 \\
0 & -1 & 1 & -1
\end{array}\right]
$$

Perform $L U$ decomposition on A to obtain lower and upper triangular matrices L and U such that $A=L U$ and L has ones on the diagonal. What are the diagonal elements of U ? What are the entries in the diagonal below the main diagonal of L ?
4. Consider the system of equations

$$
\begin{aligned}
6 x+18 y+3 z & =3 \\
2 x+12 y+z & =19 \\
4 x+15 y+3 z & =0 .
\end{aligned}
$$

Find an $L U$ decomposition of the associated matrix and then solve the system. What is the determinant of the associated matrix? What is the value of $x y z$?
5. Consider the basis

$$
\left\{v_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)\right\}
$$

of \mathbb{R}^{3}. Find an orthonormal basis of \mathbb{R}^{3} containing $v_{1} /\left\|v_{1}\right\|$ by applying Gram-Schmidt to the basis above.
6. Consider the vector space of polynomials of degree at most 2 spanned by $\left\{1, x, x^{2}\right\}$. On this space, consider the inner product

$$
p \cdot q=\int_{0}^{1} p(x) q(x) d x
$$

Use the Gram-Schmidt procedure on the set of vectors $\left\{1, x, x^{2}\right\}$ to obtain an orthogonal basis that contains the vector 1 .
7. Consider the decomposition

$$
M=\left[\begin{array}{ccc}
2 & -1 & 1 \\
1 & 3 & -2 \\
0 & 1 & -2
\end{array}\right]=\left[\begin{array}{ccc}
2 & -\frac{7}{5} & -\frac{1}{6} \\
1 & \frac{14}{5} & \frac{1}{3} \\
0 & 1 & -\frac{7}{6}
\end{array}\right]\left[\begin{array}{ccc}
1 & \frac{1}{5} & 0 \\
0 & 1 & -\frac{5}{6} \\
0 & 0 & 1
\end{array}\right] .
$$

Is this a valid $Q R$ decomposition? Why?
8. Find the singular values of the matrix

$$
M=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-1 & 1 \\
-\frac{1}{2} & -\frac{1}{2}
\end{array}\right]
$$

9. Find the singular values of the matrix

$$
M=\left[\begin{array}{ccc}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right]
$$

10. Consider the matrix

$$
A=\left[\begin{array}{ll}
3 & 0 \\
4 & 5
\end{array}\right]
$$

and the matrices

$$
U=\frac{1}{\sqrt{10}}\left[\begin{array}{cc}
1 & -3 \\
3 & 1
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
3 \sqrt{5} & 0 \\
0 & \sqrt{5}
\end{array}\right], \quad V=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] .
$$

Is the decomposition $A=U \Sigma V^{T}$ a valid singular value decomposition? If not, why?
11. Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Use the Gram-Schmidt procedure to find an orthogonal matrix Q and upper triangular matrix R to obtain the $Q R$-decomposition $A=Q R$.

