Foundations of Mathematical Physics

Homework 10

Due on May 11, 2020

Problem 1 [6 points]: Laplace operator on the half line

(a) We consider the operator $\left(-\Delta, C_{0}^{\infty}((0, \infty))\right)$ with $\Delta=\frac{d^{2}}{d x^{2}}$ as an unbounded operator on the Hilbert space $L^{2}([0, \infty))$. Is this operator self-adjoint? Is it essentially self-adjoint? Do self-adjoint extensions exist? Prove your answers using theorems from class. What is the adjoint operator?
(b) We define

$$
\begin{aligned}
H_{D}^{2}(0, \infty) & :=\left\{\psi \in H^{2}(0, \infty): \psi(0)=0\right\} \\
H_{N}^{2}(0, \infty) & :=\left\{\psi \in H^{2}(0, \infty): \psi^{\prime}(0)=0\right\}
\end{aligned}
$$

and call $-\Delta_{D}=\left(-\Delta, H_{D}^{2}(0, \infty)\right)$ the Dirichlet Laplacian and $-\Delta_{N}=\left(-\Delta, H_{N}^{2}(0, \infty)\right)$ the Neumann Laplacian. Show that these operators are self-adjoint. Are they self-adjoint extensions of the operator from (a)? How do the unitary groups they generate differ? (Consider the reflection of a wave packet at the origin. How does one get solutions of the Schrödinger equation with the specified boundary conditions from solution on \mathbb{R} ?)
(c) Try to specify all self-adjoint extensions of the operator from (a) (using intuition from physics, if necessary).

Problem 2 [6 points]: δ-interaction in \mathbb{R}^{3}

On the Hilbert space $L^{2}\left(\mathbb{R}^{3}\right)$, we consider the operator $H_{0}=-\Delta$ with domain $D\left(H_{0}\right)=$ $C_{0}^{\infty}\left(\mathbb{R}^{3} \backslash\{0\}\right)$.
(a) Do the equations $-\Delta \varphi_{ \pm}= \pm i \varphi_{ \pm}$have solutions in the sense of distributions?
(b) We now consider the equation from (a) as an ordinary differential equation and look for spherically symmetric solutions, i.e., for solutions $\varphi_{ \pm}(r)$ of the equations

$$
-\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}\right) \varphi_{ \pm}(r)= \pm i \varphi_{ \pm}(r)
$$

Find all solutions to these equations. Do they have solutions in $L^{2}\left(\mathbb{R}^{3}\right)$?
(c) Are the solutions from (b) also solutions to $H_{0}^{*} \varphi_{ \pm}= \pm i \varphi_{ \pm}$? (Hint: Check whether $\left\langle\varphi_{ \pm}, H_{0} \psi\right\rangle=\left\langle \pm i \varphi_{ \pm}, \psi\right\rangle$ for all $\psi \in D\left(H_{0}\right)$.)
(d) Find the deficiency spaces and deficiency indices. Does $\left(H_{0}, D\left(H_{0}\right)\right)$ have self-adjoint extensions?
(e) Is $\left(H_{0}, H^{2}\left(\mathbb{R}^{3}\right)\right)$ a self-adjoint extension? The Cayley transform would allow us to find all self-adjoint extensions, but since we have not studied it carefully, we omit this exercise here. Can you find other self-adjoint extensions anyway (for extra points)?

Problem 3 [4 points]: Von Neumann theorem

Let $(H, D(H)$) be a densly defined symmetric linear operator. Prove that if there is a conjugation C with $C D(H) \subset D(H)$ and $C H \varphi=H C \varphi$ for all $\varphi \in D(H)$, then $N^{+}=N^{-}$, i.e., the deficiency indices of H coincide.

Problem 4 [4 points]: Operator bounds

Let A, B be densly defined linear operators with $D(A) \subset D(B)$. Prove that the following two statements are equivalent:
(i) There are $a, b \geq 0$ such that

$$
\|B \varphi\| \leq a\|A \varphi\|+b\|\varphi\|
$$

for all $\varphi \in D(A)$.
(ii) There are $\tilde{a}, \tilde{b} \geq 0$ such that

$$
\|B \varphi\|^{2} \leq \tilde{a}^{2}\|A \varphi\|^{2}+\tilde{b}\|\varphi\|^{2}
$$

for all $\varphi \in D(A)$.
Prove also that the infimum over all permissible a in (i) coincides with the infimum over all permissible \tilde{a} in (ii).

