Foundations of Mathematical Physics

Homework 2

Due on February 24, 2020

Problem 1 [6 points]: Bijectivity of the Fourier Transform

Finish the proof that was sketched in class, that the Fourier transform $\mathcal{F}: \mathcal{S} \to \mathcal{S}$ is a continuous bijection with continuous inverse \mathcal{F}^{-1} (with \mathcal{F}^{-1} as defined in class).

Problem 2 [2 points]: Plancherel on $\mathcal S$

Prove that for $f, g \in \mathcal{S}(\mathbb{R}^d)$,

$$\int_{\mathbb{R}^d} \widehat{f}(x)g(x)dx = \int_{\mathbb{R}^d} f(x)\widehat{g}(x)dx,$$

and in particular,

$$\int_{\mathbb{R}^d} |\widehat{f}(k)|^2 dk = \int_{\mathbb{R}^d} |f(x)|^2 dx.$$

Problem 3 [6 points]: Dilations

Let $p \in [1, \infty)$, $\sigma > 0$ and $D^p_{\sigma} : \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$, $f(x) \mapsto (D^p_{\sigma}f)(x) = \sigma^{-d/p}f(x/\sigma)$ the L^p dilation with σ .

- (a) Show that $D^p_{\sigma}: \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$ is continuous and $\|D^p_{\sigma}f\|_{L^p(\mathbb{R}^d)} = \|f\|_{L^p(\mathbb{R}^d)}$.
- (b) Compute $\mathcal{F}D_{\sigma}^{2}f$ and interpret the result.

Problem 4 [6 points]: Convolution

Let $f \in C(\mathbb{R}^d)$ be bounded and let $\varphi \in \mathcal{S}(\mathbb{R}^d)$ with $\varphi \geq 0$ and $\|\varphi\|_{L^1(\mathbb{R}^d)} = 1$. Define $f_{\sigma} := f * (D^1_{\sigma}\varphi)$, where the D^1_{σ} are the dilations from Problem 3.

- (a) Show that $f_{\sigma} \in C^{\infty}(\mathbb{R}^d)$.
- (b) Show that $f_{\sigma}(x) \to f(x)$ as $\sigma \to 0$ for all $x \in \mathbb{R}^d$.
- (c) Show that the convergence in b) is uniform on each compact interval. You may additionally assume $\varphi \in C_0^{\infty}(\mathbb{R}^d)$.