Foundations of Mathematical Physics

Homework 3

Due on March 2, 2020

Problem 1 [3 points]: Derivatives of the Step Function

Let $\Theta : \mathbb{R} \to \mathbb{R}$ be the Heaviside step function, i.e.,

$$\Theta(x) = \begin{cases} 1 & \text{, for } x \ge 0 \\ 0 & \text{, for } x < 0, \end{cases}$$

and T_{Θ} the corresponding distribution. Compute all distributional derivatives of T_{Θ} (i.e., the derivative to arbitrary order).

Problem 2 [3 points]: Dilations ctd.

We continue Problem 3 from Homework 2. How does one have to define $\tilde{D}^p_{\sigma}: \mathcal{S}'(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$ in order to extend D^p_{σ} ?

Problem 3 [8 points]: Convolution in L^p Let $1 \le p < \infty$ and $f \in L^p(\mathbb{R}^d)$.

(a) Using the Hölder inequality

$$||fg||_{L^1} \le ||f||_{L^p} ||g||_{L^q},$$

where 1/p + 1/q = 1, show that for $g \in L^1(\mathbb{R}^d)$ we have

$$||f * g||_{L^p} \le ||f||_{L^p} ||g||_{L^1}.$$

Hint: Show first that $f * g \in L^p(\mathbb{R}^d)$ by using $L^p(\mathbb{R}^d) = (L^q(\mathbb{R}^d))'$ (dual space of L^q , 1/p + 1/q = 1). The inequality can then be shown to follow from this consequence of the Hahn-Banach theorem: For all $h \in L^p(\mathbb{R}^d)$ there is an $\tilde{h} \in L^q(\mathbb{R}^d)$ with $||\tilde{h}||_{L^q} = 1$ and

$$||h||_{L^p} = \tilde{h}(h) := \int_{\mathbb{R}^d} \tilde{h}(x)h(x)dx.$$

(b) Let $\varphi \in C_0^{\infty}(\mathbb{R}^d)$ with $\varphi \geq 0$ and $\int_{\mathbb{R}^d} \varphi = 1$. Define $f_{\sigma} := f * (D_{\sigma}^1 \varphi)$ as in Problem 3 from Homework 2. Using (a), show that f_{σ} converges to f in $L^p(\mathbb{R}^d)$ as $\sigma \to 0$, i.e.,

$$\lim_{\sigma \to 0} \|f_{\sigma} - f\|_{L^{p}} = 0.$$

Hint: Use that $C_0(\mathbb{R}^d)$ is dense in $L^p(\mathbb{R}^d)$ and Problem 4 from Homework 2.

Problem 4 [6 points]: Multiplication Operators on L^p

Let $V: \mathbb{R}^d \to \mathbb{R}$ be measurable and $1 \leq p \leq \infty$. Show that V defines a continuous multiplication operator

$$M_V: L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d), \psi \mapsto V\psi$$

if and only if $V \in L^{\infty}(\mathbb{R}^d)$. Show that then

$$||M_V||_{\mathcal{L}(L^p)} := \sup_{||f||_{L^p}=1} ||M_V f||_{L^p} = ||V||_{\infty}.$$

Hint: It might be easier to do this problem for continuous $V: \mathbb{R}^d \to \mathbb{R}$. Such a V is in L^{∞} if and only if it is bounded.