Foundations of Mathematical Physics

Homework 4

Due on March 16, 2020

Problem 1 [7 points]: Heat Equation

(a) Let $\psi_{0} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. Determine the solution to the heat equation

$$
\begin{aligned}
\partial_{t} \psi(t, x) & =\Delta_{x} \psi(t, x) \quad \text { for all }(t, x) \in[0, \infty) \times \mathbb{R}^{d}, \\
\psi(0, x) & =\psi_{0}(x) \quad \text { for all } x \in \mathbb{R}^{d}
\end{aligned}
$$

by using the Fourier transform. Write the solution as

$$
\begin{equation*}
\psi(t, x)=\int_{\mathbb{R}^{d}} K(t, x-y) \psi_{0}(y) d y \tag{1}
\end{equation*}
$$

and explicitly state what the function $K:(0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is.
(b) Let $\psi_{0} \in C\left(\mathbb{R}^{d}\right)$ be bounded. Show that Equation (1) defines a bounded function $\psi \in$ $C^{\infty}\left((0, \infty) \times \mathbb{R}^{d}\right)$ which solves the heat equation on $(0, \infty) \times \mathbb{R}^{d}$. Show also that ψ can be continuously extended by ψ_{0} at $t=0$, i.e., show that $\lim _{t \rightarrow 0} \psi(t, x)=\psi_{0}(x)$ for all $x \in \mathbb{R}^{d}$. (Hint: Use Problem 4 from Homework 2.)

Problem 2 [6 points]: Away from the support of $\widehat{\psi}$

Let $\psi_{0} \in \mathcal{S}$ and let its Fourier transform have compact support, i.e., $K=\operatorname{supp}(\widehat{\psi})$ is compact. Let U be an open ε-neighborhood of K, i.e., the distance between the complement of U and K is ε, i.e., $\operatorname{dist}\left(U^{c}, K\right)=\varepsilon>0$. Prove that then for any $m \in \mathbb{N}$ there is a constant C_{m} such that for any t, x with $x / t \notin U$ and $|t| \geq 1$,

$$
\left|\left(e^{-i t(-\Delta) / 2} \psi_{0}\right)(t, x)\right| \leq C_{m}(1+|t|)^{-m} .
$$

Hint: One could write the phase factor as $e^{i \alpha S}$ with $S(k)=\frac{k x-k^{2} t / 2}{1+|t|}$, prove that

$$
e^{i \alpha S}=\left[\frac{1}{i \alpha}\left|\nabla_{k} S\right|^{-2}\left(\nabla_{k} S\right) \nabla_{k}\right]^{m} e^{i \alpha S},
$$

and then integrate by parts.

Problem 3 [3 points]: Uncertainty on \mathcal{S}
Prove the Heisenberg uncertainty principle. Let

$$
\left(\delta x_{j}\right)^{2}:=\left\langle\psi,\left(x_{j}-\left\langle\psi, x_{j} \psi\right\rangle\right)^{2} \psi\right\rangle \quad\left(\delta p_{j}\right)^{2}:=\left\langle\psi,\left(p_{j}-\left\langle\psi, p_{j} \psi\right\rangle\right)^{2} \psi\right\rangle
$$

be the variances in the position and the asymptotic momentum distributions, where $p_{j}=$ $-i \partial_{x_{j}}$ and $\langle f, g\rangle=\int \bar{f} g$. (Let's just take $\psi \in \mathcal{S}$ here.) Prove that

$$
\delta x_{j} \delta p_{j} \geq \frac{\|\psi\|^{2}}{2}
$$

Problem 4 [4 points]: Refined Uncertainty on \mathcal{S}
Prove the refined uncertainty principle (Hardy's inequality) on $\mathcal{S}\left(\mathbb{R}^{3}\right)$, i.e., that

$$
\left.\langle\psi,(-\Delta) \psi\rangle \geq\left.\frac{1}{4}\langle\psi,| x\right|^{-2} \psi\right\rangle
$$

for all $\psi \in \mathcal{S}\left(\mathbb{R}^{3}\right)$. Hint: Look at the quantity $\left[|x|^{-1} p_{j}|x|^{-1}, x_{j}\right]$, where $[A, B]:=A B-B A$ is the commutator. Note: This could be directly used to give a proof of the stability of hydrogen atoms.

