Foundations of Mathematical Physics

Homework 8

Due on April 27, 2020

Problem 1 [6 points]: Properties of the Hilbert space adjoint

Prove the following properties of the Hilbert space adjoint that were stated in class. Let A, B be bounded linear operators on a Hilbert space \mathcal{H} , and $\lambda \in \mathbb{C}$. Then

- (a) $(A+B)^* = A^* + B^*$ and $(\lambda A)^* = \overline{\lambda} A^*$,
- (b) $(AB)^* = B^*A^*$,
- (c) $||A^*|| = ||A||,$
- (d) $A^{**} = A$,
- (e) $||AA^*|| = ||A^*A|| = ||A||^2$,
- (f) ker $A = (im A^*)^{\perp}$ and ker $A^* = (im A)^{\perp}$.

Problem 2 [8 points]: Unitary groups with bounded generators

Let \mathcal{H} be a Hilbert space and let $H \in \mathcal{L}(\mathcal{H})$ be symmetric. Prove that

$$e^{-iHt} := \sum_{n=0}^{\infty} \frac{(-iHt)^n}{n!}$$

defines a unitary group generated by (H, \mathcal{H}) which is also uniformly differentiable in t. Hint: Proceed step by step: Show that the series is well-defined, that the group property holds, unitarity, uniform differentiability, and finally that the Schrödinger equation holds.

Problem 3 [6 points]: Neumann series

Let X be a Banach space and $T \in \mathcal{L}(X)$ with ||T|| < 1. Prove that 1 - T is invertible with inverse

$$(1-T)^{-1} = \sum_{n=0}^{\infty} T^n.$$

Conclude that $T \in \mathcal{L}(X)$ is invertible if ||1 - T|| < 1. *Hint: Geometric series.*