Foundations of Mathematical Physics

Homework 9

Due on May 4, 2020

Problem 1 [8 points]: Closable and non-closable operators

- (a) Let T be closable (i.e., T has a closed extension). Prove that $\overline{\Gamma(T)}$ is the graph of a linear operator \overline{T} .
- (b) Let T be symmetric (i.e., as shown in class, T is in particular closable). Prove that \overline{T} is also symmetric.
- (c) Prove that the Dirac-distribution $(\delta, C_0(\mathbb{R}))$ as an unbounded operator from $L^2(\mathbb{R})$ to \mathbb{C} is not closable. Determine $\overline{\Gamma(\delta)}$. (Recall that $C_0(\mathbb{R})$ denotes the continuous functions on \mathbb{R} with compact support.)

Problem 2 [4 points]: Self-adjointness

Let $U : \mathcal{H}_1 \to \mathcal{H}_2$ be unitary and (H, D(H)) self-adjoint on \mathcal{H}_1 . Prove that $(UHU^*, UD(H))$ is self-adjoint on \mathcal{H}_2 .

Problem 3 [8 points]: Polarization

(a) Let X be a complex vector space and $B : X \times X \to \mathbb{C}$ a sesquilinear form, i.e., B is antilinear in the first, and linear in the second argument. Prove that for all $x, y \in X$ we have

$$B(x,y) = \frac{1}{4} \Big(B(x+y,x+y) - B(x-y,x-y) - iB(x+iy,x+iy) + iB(x-iy,x-iy) \Big).$$

(b) Let \mathcal{H} be a Hilbert space. Using (a), prove that a densly defined linear operator (T, D(T)) is symmetric on \mathcal{H} if and only if

$$\langle \psi, T\psi \rangle \in \mathbb{R}$$
 for all $\psi \in D(T)$.

(c) Let C be an antilinear isometry. Prove that

$$\langle C\psi, C\varphi \rangle = \langle \varphi, \psi \rangle$$
 for all $\psi, \varphi \in \mathcal{H}$.