We continue our discussion of self-adjointness for mbounded operators.
Today we discuss a few more properties and introduce some useful definitions. Those rill lead us to our first set of criteria for self-adjointuess.

First, recall the notion of a direct sum:
Definition 3.60: For two Hilbert spaces $H_{1,}$, l_{2}, we define the direct sum $H_{1} \oplus H_{2}=H_{1} \times H_{2}$ and in traduce the scalar product $\left\langle\varphi_{1} \psi_{x_{1} \oplus x_{2}}=\left\langle\varphi_{1} \psi_{1}\right\rangle_{H_{1}}+\left\langle\varphi_{2} \psi_{2}\right\rangle_{X_{2}}\right\rangle$ where $\varphi=\left(\varphi_{1}, \varphi_{2}\right), \psi=\left(\psi_{1}, \psi_{2}\right)$. $\left.\left(1 . e_{1},\left\langle\left(\varphi_{11}, \psi_{2}\right),\left(\psi_{11} \psi_{2}\right)\right\rangle=\left\langle\varphi_{1} \psi_{1}\right\rangle+c \varphi_{21} \psi_{2}\right\rangle\right)$.

Note: $H_{1} \oplus X_{2}$ with this scalar product is of course a Hilbert space.
It turns out that the adjoint operator has, due to its definition via the scalar product, a nice property that gets is somewhat close to continuity (recall that abounded operators are exactly the not continuous ones). Ce t us first define this property:

Definition 3.61:
a) The graph of a linear operator $(T, D(T))$ is $\Gamma(T)=\{(b, T u) \in H \in H: \varphi \in D(T)\}$.
b) $(T, D(T))$ is called closed if $\Gamma(T)$ is a closed subspace of $H \oplus H$.
often (Mil simple mite T
instead of ($T, D(T)$)
Put differently: T is closed if $\forall\left(\varphi_{n}\right)_{n}$ in $D(T), \varphi_{n} \rightarrow \varphi$ and $T \varphi_{n} \rightarrow \eta$ implies that $(\varphi, \mu) \in \Gamma(T)$ i..e., $\varphi \in D(T)$ and $T \varphi=y$.
(Note: This is not continuity! For mbouded operators there are surely sequences $\left(\varphi_{n}\right)_{n}$ in $D(T)$ such that $\left(T \varphi_{n}\right)_{n}$ does not converge.)
c) $(T, D(T))$ is called closeable if it has a closed extension. The smallest closed extension \bar{T} is called closure of T. (Smallest in the sense of subsets and the domain. Note that $\Gamma(\bar{T})=\overline{\Gamma(T)}$. Note that the close is mique, since we just need to add the limit points ($\left.\varphi_{n}, T_{\varphi_{n}}\right)$ to the graph.)

At this point, the property of being closed is a bit cumbersome to check. But a simple example would be:
$\longrightarrow\left(-\Delta_{1} H^{2}\left(\mathbb{R}^{d}\right)\right)$ is closed
$\zeta^{\longrightarrow}\left(-\Delta_{1} H^{4}\left(\mathbb{R}^{d}\right)\right)$ is not closed, but it is closable and $\overline{\left(-\Delta, H^{4}\left(\mathbb{R}^{d}\right)\right)}=\left(-\Delta_{1} H^{2}\left(\mathbb{R}^{d}\right)\right)$.
The reason we introduced the notion of closedness is this:
Theorem 3.63: For denshy defined $\left(T, D(T)\right.$), the adjoint T^{*} is closed.

Proof: We need to show that $T\left(T^{*}\right)$ is a closed subspace of $H \oplus H$. The idea is to mite it as an orthogonal complement, because those are always closed. let's check:

$$
\begin{aligned}
& (\psi, u) \in \Gamma\left(T^{*}\right) \stackrel{\text { (def. } 0 \text { adjoint) }}{\Longrightarrow}\langle\psi, T \varphi\rangle=\langle\eta, \varphi\rangle \quad \forall \varphi \in D(T) \\
& \Leftrightarrow-c \psi, T \varphi\rangle-\langle\eta, \varphi\rangle=0 \quad \forall \varphi \in D(T) \\
& \Leftrightarrow c\left(\Psi_{i n}\right)_{1}(-T \varphi, \varphi)>_{\text {HOP }}=0 \quad \forall \varphi \in D(T) \\
& \Leftrightarrow c(\psi, y), \phi>_{\text {HA }}=0 \quad \forall \phi \in W(T(T)) \text {, where } \\
& W: H O H P \rightarrow H \oplus H:\left(\varphi_{11} \varphi_{2}\right) \mapsto\left(-\varphi_{2}, \varphi_{1}\right) \text {, which is clearly litany }
\end{aligned}
$$

Therefore, $\Gamma\left(T^{*}\right)=(W(\Gamma(T)))^{\perp}$, which is closed (since it is an orthogonal complement).

Next, what if T is additionally symmetric? Then we have the following:

Proposition 3.64: A densly defined operator T is symmetric if and only if its adjoint is an extension ice., $T \subset T^{*}$.

$$
\begin{aligned}
\text { Proof: " } \Rightarrow\rangle^{\prime \prime} T \text { symmetric } & \Rightarrow\left\langle\psi_{1} T \varphi\right\rangle=\langle T,, \varphi\rangle \forall \varphi, \psi_{\in} D(T) \\
& \Rightarrow\langle\psi, T \varphi\rangle=\langle\psi, \varphi\rangle \forall \varphi \in D(T) \text { holds with } y=T \psi=T^{*} \psi \\
& \Rightarrow D(T) \subset D\left(T^{*}\right)
\end{aligned}
$$

$$
" \text { " for } \psi \in D(T)<D\left(T^{*}\right) \Rightarrow \forall \varphi \in D(T) \text { we have }\langle\psi, T \varphi\rangle=\left\langle T^{*} \psi, \varphi\right\rangle=\langle T \psi, \varphi\rangle \text {, }
$$ so T symmetric.

Note:- So together with Theorem 3.63, we find that symmetric operators are always closable.

- But for symmetric T, the closure \bar{T} is not necessarily equal to $T^{*}\left(D\left(T^{*}\right)\right.$ might be "too big"). In fact: T symmetric $\Rightarrow \bar{T}$ symmetric (see one of the next HW exercises), but T^{*} is usually not. ($1 f T^{*}$ is also symmetric, then $T^{*}=\bar{T}$.)
- Try to connect these statements with the example of the translation aperator on $[0,1]$.

Let us note a few more properties:
Proposition 3.67: For densly defined T and $T c S$ we have $S^{*} c T^{*}$.

So extending a densly defined operator makes the adjoint "Smaller".
Proof: With $W_{\text {as }}$ in the proof of Theorem 3.63, we have $\Gamma\left(S^{*}\right)=(W(\Gamma(s)))^{\perp}$.

But now $T c S_{\text {is., }} \Gamma(T) \subset \Gamma(S)$, so also $W(\Gamma(T) \mid \subset W(\Gamma(s))$, so

$$
\Gamma\left(S^{*}\right)=(W(T(S)))^{\perp} c(W(\Gamma(T)))^{\perp}=\Gamma\left(T^{*}\right) .
$$

We already noted that adjoints of densely defined operators are not necessarily densly defined themselves. But:

Proposition 3.68: If a densly defined (linear) operator T is closable, then its adjoint T^{*} is densly defined.

Proof: Using what we already established so far, let us show denseness of $D\left(T^{*}\right)$ by showing that $\left(D\left(T^{*}\right)\right)^{\perp}=0$. Soletus choose some $\eta \in\left(D\left(T^{*}\right)\right)^{\perp}$.

Then by definition $c n, \varphi\rangle=0 \forall \varphi \in D\left(T^{*}\right)$, so in particular $\left.c(\eta, 0),\left(\varphi, T^{*} \varphi\right)\right\rangle=0$

$$
\begin{aligned}
& \forall \varphi \in D\left(T^{*}\right) \text {, so } \quad(n, 0) \in(\underbrace{(T)}_{\left(T^{*}\right)})^{\perp}=(W(\Gamma(T)))^{\perp \perp}=\overline{W(\Gamma(T))} . \\
&=(T(T)))^{\perp} \text { from } \\
& \text { proof of Thu. } 3.63
\end{aligned}
$$

But $W(\Gamma(T))=\{(-T \varphi, \varphi): \varphi \in D(T)\}$, so there must be a sequence in $W(\Gamma(T))$ that converges to $(n, 0)$ i.e., $\left(\varphi_{n}\right)_{n}$ in $D(T)$ with $\varphi_{n} \rightarrow 0$ and $-T \varphi_{n} \rightarrow y$.

A few more properties:
Proposition 3.69: If T is densely defined and closable, then
a) $T^{* *}=\bar{T}$
b) $(T)^{*}=T^{*}=T^{* * *}$.

Let us ship the proof it is similar to the previous ones.
Finally, what does this imply for symmetric operators?
Corollary 3.70: Let T be densly defined and symmetric. Then T^{*} is closable and densly defined, and a) $T c \bar{T}=T^{* *} c T^{*}=T^{* * *}$, in particular $T^{* *}$ is symmetric.

$$
\text { b) }(T)^{*}=T^{*}
$$

This follows immediately from the properties we have discussed so for.

