(ast time we discussed criteria for self-adjointness and essential
self-adjointness of a denshy defined symmetric linear operator
$$(H_1, D(H))$$
.
We found that
(i) H is self-adjoint. (=> (ii) H is closed and $\ker(H^{\pm}:) = \{0\}$.
(i) H is self-adjoint. (=> (iii) H is closed and $\ker(H^{\pm}:) = \{0\}$.
(i) H is self-adjoint. (=> (iii) $\ker(H^{\pm}:) = \{0\}$.
(i) H is essentially self-adjoint. (=> (iii) $\ker(H^{\pm}:) = \{0\}$.
(i) H is essentially self-adjoint. (=> (iii) $\ker(H^{\pm}:) = \{0\}$.
(ii) H is essentially self-adjoint. (=> (iii) $\ker(H^{\pm}:) = \{0\}$.
Today, we will deal with the possibility of multiple self-adjoint extansions (as we had
for $D_{\min} = -i \frac{d}{dx}$). For that, we used to look a bit closer at $\ker(H^{\pm}:)$ and $\operatorname{in}(H^{\pm}:)$.
Note that $\ker(H^{\pm}:) = \operatorname{in}(H^{\pm}:)^{\perp}$ by definition of H*. The dimensions of these spaces
have names: $\operatorname{yetw}(H^{\pm}:) = \operatorname{in}(H^{\pm}:)^{\perp}$ ove called defined symmetric linear operator. Then
 $\cdot L^{\pm} := \ker(H^{\pm}:i) = \operatorname{in}(H^{\pm}:)^{\perp}$ ove called deficiency spaces of H,
 $N^{\pm}:= \dim L^{\pm}$ are called deficiency indices of H.

So essential self-adjointness
$$\iff N^{+} = N^{-} = 0$$
 $(\mathcal{H} = \overline{im(H\pm i)} \oplus L^{\pm})$.
What we want to show next is that existence of self-adjoint extensions $\iff N^{+} = N^{-}$
(but not necessarily = 0)

These can be nicely studied with the following map:

Definition 3.84: let (H, D(H)) be a density defined symmetric linear operator. Then we define its Cayley transform $U: im(H+i) \rightarrow im(H-i)$ as $V:=(H-i)(H+i)^{-1}$.

Note:
$$V$$
 is clearly surjective
 V is also isometric, since
 $\|VV\| = \|V(H+i)v\| = \|(H-i)v\| = \sqrt{\|Hv\|^2 + \|v\|^2} = \|(H+i)v\| = \|V\|$
by det. $V = (H+i)v$
for some v

These two lemmas imply:
Theoren 3.89: H has self-adjoint extensions
$$\Leftarrow N^{+} = N^{-}$$
.
In this case the extensions are parametrized by $u \in U(N^{+})$ (the mitary group, i.e., mitary
 $n \times n$ matrices).

We skipped the proofs, but let us look at examples:
•
$$D_{min} = -i \frac{d}{dx}$$
 on $\mathcal{H} = L^2([0,1])$ with $D(D_{min}) = C_0^\infty((0,1))$. We already found before

that $\varphi_{\pm} = e^{\mp x} \in \mathcal{D}(\mathcal{D}_{\min}^{*}) = H^{1}([0,1])$, so $L^{\pm} = \operatorname{span} \{ \varphi_{\pm} \}$, i.e., $N^{+} = N^{-} = 1$. So \mathcal{D}_{\min} has self-adjoint extensions parametrized by $\mathcal{U}(I)$, i.e., multiplication with $e^{i\alpha}$.

Translations on the half-line. let
$$D_{[0,\infty)} = -i \frac{d}{dx}$$
 on $\mathcal{H} = L^2([0,\infty))$ with domain
 $D(D_{[0,\infty)}) = C_0^{\infty}((0,\infty))$. Integration by parts shows that $D_{[0,\infty)}$ is indeed symmetric,
and $D(D_{[0,\infty)}^{*}) = H^1([0,\infty))$. Now consider $L^{\pm} = \ker(D_{[0,\infty)}^{*} \mp i)$, i.e., we need to find
solutions to
 $D_{[0,\infty)}^{*}(\varrho_{\pm} = -i \frac{d}{dx}(\varrho_{\pm} = \pm i(\varrho_{\pm})$.

The only solutions are
$$\varrho_{\pm} = e^{\mp X}$$
. Now $\varrho_{\pm} \in D(D_{\text{Eq. onl}}^{**})$ since it goes to 0 at on. Thus
 $(^{+} = \text{span} \{e^{-X}\} \text{ and } N^{+} = 1$. But ϱ_{-} is not even in $L^{2}([0, \infty])$, so $L^{-} = \{0\}$ and $N^{-} = 0$.

Therefore,
$$D_{[0,\infty)}$$
 has no self-adjoint extensions. This makes sense because it is clearly
impossible to define a mitary group of translations on $L^2([0,\infty))$.
Red uple that $= \Lambda_{-\infty} L^2([0,\infty))$ can be defined as a self-adjoint measure so the

Finally, let us mention a very useful criterion to check whether
$$N^+ = N^-$$
. For this, recall the following:

Definition 3.93: An anti-linear map C:
$$\mathcal{H} \rightarrow \mathcal{H}$$
 (meaning that $C(\alpha 4+\alpha) = \overline{\alpha} C(4) + C(\alpha)$) is called a conjugation if $||C4|| = ||4|| \forall 4 \in \mathcal{H}$ and $C^2 = id_{\mathcal{H}}$.

Examples: Of course, complex conjugation
$$\Psi(x) \mapsto \overline{\Psi(x)}$$
 is a conjugation.
• For Dirac spinors $\Psi \in L^2(\mathbb{TR}^3, \mathbb{C}^4)$ that come up in relativistic quantum physics,
 $\Psi(x) \mapsto \sqrt{\Psi(x)}$ for any 4×4 matrix χ with $\chi \overline{\chi} = id$, is a conjugation.

Then it follows relatively straightforwardly that the following holds:

Theorem 3.95: von Nermann-theorem (ef (H,D(H)) be a dansly defined symmetric linear operator. If there is a conjugation C with CD(H) CD(H) and CH(e=HC(e) $\forall (e \in D(H))$, then $N^+ = N^-$ (i.e., H has self-adjoint extensions).

The last technical tool that we need is the resolvent. This is a very important operator especially in spectral theory, but it will also be useful for us here.

Recall that for non-matrices A we defined eigenvalues λ and eigenvectors $\vec{x} \neq 0$ as solutions to $A\vec{x} = \lambda \vec{x}$, i.e., $(A - \lambda) \vec{x} = 0$. These exist if $(A - \lambda)$ is not invertible.

This we can generalize to unbounded operators.

Definition 3.97: (et (T,D(T)) be a linear operator on define the resolvent set
$$Q(T) := \{ z \in C : (T-z) : D(T) \rightarrow de is bijective with continuous invorse]$$

For $z \in Q(T)$ we call $R_{z}(T) := (T-z)^{-1} \in S(de)$ the resolvent of T at z .
The spectrum of T is $G(T) = C \setminus Q(T)$ (the complement of the resolvent set).
We differentiate further:
a) $G_{p}(T) := \{ z \in C : T-z \text{ is not injective} \}$ is called the point spectrum, and any
 $z \in G_{p}(T)$ is called eigenvalue of T.
b) $G_{c}(T) := \{ z \in C : T-z \text{ is injective}, but not surjective, but has dense image} \}$ is called
the continuous spectrum.
c) $G_{r}(T) := \{ z \in C : T-z \text{ is injective}, but not surjective, and the image is not dense } is called resolved to zero.$

Before we discuss examples, let us note the following:

$$\frac{\text{Theorem 3.98:}}{\cdot \text{T closed}} = 2 e(T) = \{z \in \mathbb{C} : (T - z) : D(T) \rightarrow \mathcal{H} \text{ is bijective} \} \text{ and for}$$

$$z \in Q(T) \text{ we have that } (T - z)^{-1} : \mathcal{H} \rightarrow (D(T), ||\cdot||_{D(T)}) \text{ is bounded.}$$

$$\cdot \text{T not closed} = 2 e(T) = \emptyset.$$

Proof:
$$(f \ T \ is closed, (D(T), ||\cdot||_{D(T)})$$
 is complete, i.e., a Hilbert space. And by definition, $T: (D(T), ||\cdot||_{D(T)}) \rightarrow \mathcal{H}$ is bounded, in fact by 1 in norm:
 $||T\mathcal{Y}||_{\mathcal{H}}^{2} \leq ||T\mathcal{Y}||_{\mathcal{H}}^{2} + ||\mathcal{Y}||_{\mathcal{H}}^{2} =: ||\mathcal{Y}||_{D(T)}^{2}$.

Now one can use the open mapping theorem: let A: X > Y be a continuous linear operator, where XiY are Banach spaces. If A is surjective, then A is an open map (i.e., it maps open sets into open sets).

So have, if
$$T-z: (D(T), ||\cdot||_{D(T)}) \rightarrow \mathcal{H}$$
 is surjective, it is also open. So if $T-z$ is
bijective, then $(T-z)^{-1}: \mathcal{H} \rightarrow (D(T), ||\cdot||_{D(T)})$ is continuous (preimages of open sets are open).

For the second statement one can show
$$P(T) \neq \emptyset = T$$
 closed. If $P(T) \neq \emptyset$, then there
is a z \in C s.t. the resolvent $R_2(T)$: $H \rightarrow D(T)$ exists. Using the definition of closedness
one can then infer that T is indeed closed; let us skip the details.

So for closed T we do not need the requirement of continuous invorse in the definition
of
$$e(T)$$
, and thus $G(T) = G_p(T) \lor G_c(T)$ $\lor G_r(T)$.
they are disjoint

And for dim H (00, T-2 injective => T-2 surjective, SO 6(T) = 6p(T), the eigenvalues.