Foundations of Mathematical Physics

Midterm Exam

Instructions:

- Do all the work on this exam paper.
- Show your work, i.e., carefully write down the steps of your solution.
- Calculators and other electronic devices and notes are not allowed.
- You are free to refer to any results proven in class or the homework sheets unless otherwise stated (and unless the problem is to reproduce a result from class or the homework sheets).
\qquad

Problem 1: Dilations [20 points]
Let $\sigma>0$. We define the L^{2} dilation with σ by $D_{\sigma}: \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{d}\right), f(x) \mapsto\left(D_{\sigma} f\right)(x)=$ $\sigma^{-d / 2} f\left(\frac{x}{\sigma}\right)$, where $\mathcal{S}\left(\mathbb{R}^{d}\right)$ is the space of Schwartz functions.
(a) Prove that $D_{\sigma}: \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{d}\right)$ is continuous.
(b) Show that $\left\|D_{\sigma} f\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}$ for all $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
(c) Compute $\mathcal{F} D_{\sigma} f$ for $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, where \mathcal{F} denotes Fourier transform.

Problem 1: Extra Space

Problem 2: The Free Schrödinger Equation [30 points]
We consider the solution to the free Schrödinger equation

$$
\psi(t, x)=(2 \pi i t)^{-d / 2} \int_{\mathbb{R}^{d}} e^{i \frac{(x-y)^{2}}{2 t}} \psi_{0}(y) d y
$$

for ψ_{0} in some function space. In the following, \mathcal{F} denotes Fourier transform.
(a) Let $\psi_{0} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ (the space of Schwartz functions). Prove that we can decompose

$$
\psi(t, x)=(i t)^{-d / 2} e^{i \frac{x^{2}}{2 t}}\left(\mathcal{F} \psi_{0}\right)\left(\frac{x}{t}\right)+r(t, x)
$$

with $\lim _{t \rightarrow \infty}\|r(t, \cdot)\|_{L^{2}\left(\mathbb{R}^{d}\right)}=0$.
(b) The free propagator

$$
P_{f}(t): L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right), P_{f}(t)=\mathcal{F}^{-1} e^{-i \frac{k^{2}}{2} t} \mathcal{F}
$$

is well-defined by extending the Fourier transform from $\mathcal{S}\left(\mathbb{R}^{d}\right)$ to $L^{2}\left(\mathbb{R}^{d}\right)$. Is P_{f} continuous in norm (i.e., uniformly)? Is it strongly (i.e., pointwise) continuous? Is it weakly continuous? Under which conditions (if at all) is P_{f} differentiable (in norm, strongly, weakly)? Prove all your answers!

Problem 2: Extra Space

Problem 3: Linear Operators [20 points]

(a) Let X and Y be Banach spaces and let $L: X \rightarrow Y$ be linear. Prove that L is continuous if and only if L is bounded.
(b) Let $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ be an orthonormal basis of a Hilbert space \mathcal{H}. We define a sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of bounded linear operators in \mathcal{H} by

$$
A_{n} \psi=\sum_{i=1}^{\infty}\left\langle\psi, \varphi_{i}\right\rangle \varphi_{i+n}
$$

for all $\psi \in \mathcal{H}$, where $\langle\cdot, \cdot\rangle$ is the scalar product on \mathcal{H}. Prove that A_{n} converges weakly to 0 , but not strongly.

Problem 3: Extra Space

