Foundations of Mathematical Physics

Homework 1

Due on September 22, 2021

Problem 1 [4 points]: Integrals with Parameter

Prove the following lemma that was stated in class. Let $\Gamma \subset \mathbb{R}$ be an open interval and $f: \mathbb{R}^{d} \times \Gamma \rightarrow \mathbb{C}$ such that $f(x, \gamma) \in L^{1}\left(\mathbb{R}^{d}\right)$ for all fixed $\gamma \in \Gamma$. Let $I(\gamma)=\int_{\mathbb{R}^{d}} f(x, \gamma) d x$.
(a) If the map $\gamma \mapsto f(x, \gamma)$ is continuous for almost all $x \in \mathbb{R}^{d}$ and if there is a $g \in L^{1}\left(\mathbb{R}^{d}\right)$ with $\sup _{\gamma \in \Gamma}|f(x, \gamma)| \leq g(x)$ for almost all $x \in \mathbb{R}^{d}$, then $I(\gamma)$ is continuous.
(b) If the map $\gamma \mapsto f(x, \gamma)$ is continuously differentiable for all $x \in \mathbb{R}^{d}$ and if there is a $g \in L^{1}\left(\mathbb{R}^{d}\right)$ with $\sup _{\gamma \in \Gamma}\left|\partial_{\gamma} f(x, \gamma)\right| \leq g(x)$ for almost all $x \in \mathbb{R}^{d}$, then $I(\gamma)$ is continuously differentiable and

$$
\frac{d I(\gamma)}{d \gamma}=\frac{d}{d \gamma} \int_{\mathbb{R}^{d}} f(x, \gamma) d x=\int_{\mathbb{R}^{d}} \frac{\partial}{\partial \gamma} f(x, \gamma) d x
$$

Problem 2 [4 points]: Integration by Parts in L^{1} Let $f \in L^{1}(\mathbb{R}) \cap C^{1}(\mathbb{R})$ with $f^{\prime} \in L^{1}(\mathbb{R})$.
(a) Show that $f \in C_{\infty}(\mathbb{R})$.
(b) Show integration by parts for $g \in L^{\infty}(\mathbb{R}) \cap C^{1}(\mathbb{R})$ with $g^{\prime} \in L^{\infty}(\mathbb{R})$, i.e.,

$$
\int_{\mathbb{R}} g(x) f^{\prime}(x) d x=-\int_{\mathbb{R}} g^{\prime}(x) f(x) d x .
$$

(c) Show that this implies that $\widehat{f}^{\prime}(k)=i k \widehat{f}(k)$.

Problem 3 [4 points]: Smoothness and Decay of the Fourier Transform

Let $\ell \in \mathbb{N}$ and $f \in L^{1}(\mathbb{R})$. State (for each case separately) sufficient and preferably weak conditions for f which imply that
(a) $\widehat{f} \in C^{\ell}(\mathbb{R})$,
(b) $\left.\sup _{k \in \mathbb{R}}| | k\right|^{\ell} \widehat{f}(k) \mid<\infty$,
(c) $\widehat{f} \in L^{1}(\mathbb{R})$.

Problem 4 [4 points]: Fourier Transform of a Gaussian
Let $a \in \mathbb{C}$ with $\operatorname{Re} a>0$ and $f: \mathbb{R} \rightarrow \mathbb{C}$ defined by $f(x)=e^{-a x^{2} / 2}$. Show that $f \in \mathcal{S}(\mathbb{R})$ and

$$
\widehat{f}(k)=a^{-1 / 2} e^{-k^{2} /(2 a)} .
$$

Problem 5 [4 points]: Bosons and Fermions

We consider two non-interacting particles in one dimension confined to the box $\left[-\frac{1}{2}, \frac{1}{2}\right]$, with periodic boundary conditions.
(a) Consider just one of the particles, and find the ground state $\varphi_{0}(x)$ and first excited state $\varphi_{1}(x)$. (The time-independent Schrödinger equation is $E \varphi=-\frac{1}{2} \Delta \varphi$.)
(b) For fermions, the 2-particle ground state is

$$
\psi_{\text {fermion }}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\varphi_{0}\left(x_{1}\right) \varphi_{1}\left(x_{2}\right)-\varphi_{1}\left(x_{1}\right) \varphi_{0}\left(x_{2}\right)\right)
$$

Consider also the bosonic state with the same energy (which here is the first 2-particle excited state)

$$
\psi_{\text {boson }}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\varphi_{0}\left(x_{1}\right) \varphi_{1}\left(x_{2}\right)+\varphi_{1}\left(x_{1}\right) \varphi_{0}\left(x_{2}\right)\right) .
$$

For each of these two states, what is the probability that both particles are on the same side of the box, i.e., that both particles are in $\left[-\frac{1}{2}, 0\right]$ or in $\left[0, \frac{1}{2}\right]$?
(c) Compute the probability above also for the bosonic 2-particle ground state.

