Foundations of Mathematical Physics

Homework 1

Due on September 22, 2021

Problem 1 [4 points]: Integrals with Parameter

Prove the following lemma that was stated in class. Let $\Gamma \subset \mathbb{R}$ be an open interval and $f: \mathbb{R}^d \times \Gamma \to \mathbb{C}$ such that $f(x, \gamma) \in L^1(\mathbb{R}^d)$ for all fixed $\gamma \in \Gamma$. Let $I(\gamma) = \int_{\mathbb{R}^d} f(x, \gamma) dx$.

- (a) If the map $\gamma \mapsto f(x, \gamma)$ is continuous for almost all $x \in \mathbb{R}^d$ and if there is a $g \in L^1(\mathbb{R}^d)$ with $\sup_{\gamma \in \Gamma} |f(x, \gamma)| \leq g(x)$ for almost all $x \in \mathbb{R}^d$, then $I(\gamma)$ is continuous.
- (b) If the map $\gamma \mapsto f(x, \gamma)$ is continuously differentiable for all $x \in \mathbb{R}^d$ and if there is a $g \in L^1(\mathbb{R}^d)$ with $\sup_{\gamma \in \Gamma} |\partial_{\gamma} f(x, \gamma)| \leq g(x)$ for almost all $x \in \mathbb{R}^d$, then $I(\gamma)$ is continuously differentiable and

$$\frac{dI(\gamma)}{d\gamma} = \frac{d}{d\gamma} \int_{\mathbb{R}^d} f(x,\gamma) dx = \int_{\mathbb{R}^d} \frac{\partial}{\partial \gamma} f(x,\gamma) dx.$$

Problem 2 [4 points]: Integration by Parts in L^1

Let $f \in L^1(\mathbb{R}) \cap C^1(\mathbb{R})$ with $f' \in L^1(\mathbb{R})$.

- (a) Show that $f \in C_{\infty}(\mathbb{R})$.
- (b) Show integration by parts for $g \in L^{\infty}(\mathbb{R}) \cap C^{1}(\mathbb{R})$ with $g' \in L^{\infty}(\mathbb{R})$, i.e.,

$$\int_{\mathbb{R}} g(x)f'(x)dx = -\int_{\mathbb{R}} g'(x)f(x)dx.$$

(c) Show that this implies that $\hat{f}'(k) = ik\hat{f}(k)$.

Problem 3 [4 points]: Smoothness and Decay of the Fourier Transform

Let $\ell \in \mathbb{N}$ and $f \in L^1(\mathbb{R})$. State (for each case separately) sufficient and preferably weak conditions for f which imply that

- (a) $\widehat{f} \in C^{\ell}(\mathbb{R}),$
- (b) $\sup_{k \in \mathbb{R}} \left| |k|^{\ell} \widehat{f}(k) \right| < \infty$,
- (c) $\widehat{f} \in L^1(\mathbb{R}).$

Problem 4 [4 points]: Fourier Transform of a Gaussian

Let $a \in \mathbb{C}$ with $\operatorname{Re} a > 0$ and $f : \mathbb{R} \to \mathbb{C}$ defined by $f(x) = e^{-ax^2/2}$. Show that $f \in \mathcal{S}(\mathbb{R})$ and

$$\widehat{f}(k) = a^{-1/2} e^{-k^2/(2a)}$$

Problem 5 [4 points]: Bosons and Fermions

We consider two non-interacting particles in one dimension confined to the box $\left[-\frac{1}{2}, \frac{1}{2}\right]$, with periodic boundary conditions.

- (a) Consider just one of the particles, and find the ground state $\varphi_0(x)$ and first excited state $\varphi_1(x)$. (The time-independent Schrödinger equation is $E\varphi = -\frac{1}{2}\Delta\varphi$.)
- (b) For fermions, the 2-particle ground state is

$$\psi_{\text{fermion}}(x_1, x_2) = \frac{1}{\sqrt{2}} \left(\varphi_0(x_1)\varphi_1(x_2) - \varphi_1(x_1)\varphi_0(x_2) \right)$$

Consider also the bosonic state with the same energy (which here is the first 2-particle excited state)

$$\psi_{\text{boson}}(x_1, x_2) = \frac{1}{\sqrt{2}} \bigg(\varphi_0(x_1)\varphi_1(x_2) + \varphi_1(x_1)\varphi_0(x_2) \bigg).$$

For each of these two states, what is the probability that both particles are on the same side of the box, i.e., that *both* particles are in $\left[-\frac{1}{2}, 0\right]$ or in $\left[0, \frac{1}{2}\right]$?

(c) Compute the probability above also for the bosonic 2-particle ground state.