Calculus and Elements of Linear Algebra I Session 10
Prof. Sören Petrat, Dr. Stephanguricke (based on lecture notes by Marcel Oliver) Jacobs University, Fall 2022
2. Derivatives
2.1 Introduction to derivatives and their properties

Topic 2.1.C: Implicit differentiation \& second derivative

Implicit differentiation
For equations that are difficult to write in terms of a function, one can use implicit differentiation

Example: $x^{2}+y^{2}=1$ (unit circle)
Goal: Find $y^{\prime}(x)=\frac{d(1)}{d(x)}$ "dependent variable"
Naiveln: $\quad u= \pm \sqrt{1-x^{2}}= \pm\left(1-x^{2}\right)^{\frac{1}{2}}$

0

$$
\begin{aligned}
\curvearrowright \frac{d y}{d x} & =\underbrace{ \pm \frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}}}_{\text {outer }} \cdot(-2 x) \\
& =\underbrace{\frac{-x}{ \pm \sqrt{1-x^{2}}}}_{=y}=-\frac{x}{y}
\end{aligned}
$$

We get the same via implicit differentiation:
Suppose $y=y(x)$ and differentiate $x^{2}+y^{2}=1$

$$
\text { w.r.t. } x \text { : }
$$

\square

$$
\Rightarrow
$$

Calculus and Elements of Linear Algebra I Session 10
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture Jacobs University, Fall 2022
2. Derivatives
2.1 Introduction to derivatives and their properties

Topic 2.1.C: Implicit differentiation \& second derivative

Second derivative
If we differentiate the derivative again, we get the second derivative, ie. the local change of the slope of the function.

Ex:i $f(x)=x^{2}, f^{\prime}(x)=, f^{\prime \prime}(x)=$
We can also write

$$
\dot{f}^{u}(x)=\frac{d^{2} f}{n v^{2}}=\ddot{\rho}
$$

If the change of the slope of the function is positive at a point, the slope is getting larger, i.e. the curve is curving up-wards:

$$
f^{\prime \prime}(x)>0
$$

f is concave up or convex
convex, ie. curving upwards
or has positive curvature
(tangent line is below graph)

If the change of the slope of the function is negative at a point, the slope is getting smaller, i.e. the curve is curving downwards:

$$
f^{\prime \prime}(x)<0
$$

If is concave down or concave

If $f^{\prime \prime}(x)=0$, the slope is not changing at
x, ie. the slope remains constant at x and the curve does not curve up or down at x.

Example of entirely convex function:
$f(x)=x^{2}$

$$
f(x)=x^{2}
$$

Example of entirely concave function:

$$
f(x)=-x^{2}
$$

Furthermore:
If $f^{4}>0$, then f^{\prime} is increasing
If $f^{\prime \prime}<0$, then f^{\prime} is decreasing

So if $f^{\prime \prime}$ changes sign at a point x, then the rate of change of the rate of change (in physical terms the acceleration) changes sign.
Such a point is called point of inflection $\left(f^{\prime \prime}(x)=0\right)$
\Rightarrow slope starting to get less steep \leftrightarrow point of inflection slope getting steeper

