Calculus and Elements of Linear Algebra I Session 12
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture Jacobs University, Fall 2022
2. Derivatives
2.2 Applications of differentiation

Topic 2.2.A: Extreme value problems
Conditions for extreme values
Possible extrema:

- Critical points
- Points where $f^{\prime}(x)$ is not defined
- End points of closed intervals of definition

Eg:
$f(a)$ max

Sufficient conditions for existence of extreme values:

- If f^{\prime} changes sign at the point in question
- $f^{\prime \prime}(x)$ exists and is non-zero:
\rightarrow if $f^{\prime \prime}(x)>0$, then (provided $f^{\prime \prime}$ exists and is continuous near x) f^{\prime} is increasing. Hence, if $f^{\prime}(x)=0$, it must change sign from - to + , so f has a min at x
\rightarrow if $f^{\prime \prime}(x)<0$, then (provided $f^{\prime \prime}$ exists and is continuous near x) f^{\prime} is decreasing. Hence, if $f^{\prime}(x)=0$, it must change sign from + to - , so f has a max at x

Calculus and Elements of Linear Algebra I Session 12
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver) Jacobs University, fall 2022
2. Derivatives
2.2 Applications of differentiation

Topic 2.2.A: Extreme value problems
Example:
Construct a rectangular container with square base:

- material for base $5 \frac{\epsilon}{m^{2}}$
- material for sides/top $1 \frac{\epsilon}{m^{2}}$

What is the largest possible volume for $72 €$?
Volume $U=b^{2} \cdot h \quad$ (base length $b \cdot$ height h)
costs $c=5 \cdot b^{2}+1 \cdot\left(b^{2}+4 b h\right) \quad(\operatorname{in} \epsilon)$
base top 4 sides
area area area
cost c should be $72 \in$

$$
\Rightarrow 72=5 b^{2}+b^{2}+4 b h \Rightarrow 6 b^{2}+446 h=72
$$

Solve for $h: \quad h=\frac{36-3 b^{2}}{2 b}=18 \frac{1}{b}-\frac{3}{2} b$

$$
\begin{aligned}
& \Rightarrow V(b)=b^{2} \cdot(\underbrace{18 \frac{1}{b}-\frac{3}{2} b}_{=h})=18 b-\frac{3}{2} b^{3} \\
& \Rightarrow V^{\prime}(b)=18-\frac{3}{2} \cdot 3 b^{2}=18-\frac{9}{2} b^{2} \stackrel{!}{=} 0
\end{aligned}
$$

to get extreme value
$\Rightarrow 4=b^{2} \Rightarrow b=2$ (negative b does not make)
$\Rightarrow V^{\prime \prime}(b)=-9 b \leq 0$ for $b>0$, so we have a max. at $b=2$ (in m)

$$
\begin{aligned}
& \Rightarrow h=18 \frac{1}{2}-\frac{3}{2} \cdot 2=9-3=6(\text { in } m) \\
& \Rightarrow V=2^{2} \cdot 6=24 \quad\left(\text { in } m^{3}\right)
\end{aligned}
$$

Calculus and Elements of Linear Algebra I Session 12
Prof. Sören Petrat, Dr. Stephanguricke (based on lecture notes by Marcel Oliver) Jacobs University, fall 2022
2. Derivatives
2.2 Applications of differentiation

Topic 2.2.A: Extreme value problems
Example:
Construct a rectangular container with square base:

- material for base $5 \frac{\epsilon}{m^{2}}$
- material for sides/top $1 \frac{\epsilon}{m^{2}}$

What is the largest possible volume for $72 €$?

Alternative solution using implicit differentiation
Suppose both h and b are functions of some
artificial parameter t (i.e. $V(t)$ and ${ }^{V} b(t)$).
Then we have two conditions for the two unknowns h and b :

- $\frac{d V}{d t} \stackrel{!}{=} O$ (necessary condition for max. volume) with $V=b^{2} \cdot h$ \otimes
- $3 b^{2}+2 b h=$ constant (total cost in ϵ, here 72)

We use implicit differentiation:

$$
\begin{align*}
& \frac{d V}{d t}=2 b \frac{d b}{d t} \cdot h+b^{2} \frac{d h}{d t} \stackrel{!}{=} 0 \quad \text { (Product and } \\
& \Rightarrow 2 b h \frac{d b}{d t}=-b^{2} \frac{d h}{d t} \tag{1}
\end{align*}
$$

and differentiating $*$ on both sides gives:

$$
\begin{align*}
& 3 \cdot 2 b \frac{d b}{d t}+2 h \frac{d b}{d t}+2 b \frac{d h}{d t}=0 \\
\Rightarrow & (6 b+2 h) \frac{d b}{d t}=-2 b \frac{d h}{d t} \tag{2}
\end{align*}
$$

(divide (1) by (2): $\frac{2 b h \frac{d b}{d t}}{(6 b+2 h) \frac{d b}{d t}}=\frac{-b^{2} \frac{d h}{d t}}{-2 b \frac{d h}{d t}}$
(toget rid of $\left.\frac{d b}{d t} \& \frac{d h}{d t}\right)$

$$
\Rightarrow \frac{h}{3 b+h}=\frac{1}{2} \Rightarrow 2 h=3 b+h \Rightarrow h=3 b
$$

Now we can get other quantities (b and finally
V) by inserting into and \otimes.

This approach avoids solving before differentiating, so it works more generally.

Calculus and Elements of Linear Algebra I Session 12
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture Jacobs University, Fall 2022
2. Derivatives
2.2 Applications of differentiation

Topic 2.2.A: Extreme value problems

Example: What is the min. distance of point $(2,0)$ to graph of $y^{2}=x^{2}+1$?

Sketch:

$$
e^{2}=(2-x)^{2}+y^{2}
$$

Here: $e^{2}=(2-x)^{2}+x^{2}+1$ as $y^{2}=x^{2}+1$
Note: Minimizing l means also minimizing e^{2} !

$$
\Rightarrow 0 \stackrel{!}{=} \frac{d l^{2}}{d x}=2(2-x) \cdot(-1)+2 x=4 x-4
$$

outer inner

$$
\Rightarrow x=1 \quad \Rightarrow \quad y=\sqrt{2} \text { and } l=\sqrt{3}
$$

Why is this a min. We could look at second derivative, but its easier here:
$\lim _{x \rightarrow \pm \infty} l^{2}=\infty$ and only one
critical point af $x=1$
$\Rightarrow e^{2}$ cannot have a max., so critical point must correspond to min.
(You can also see from sketch that there cannot be a max. <

