Calculus and Elements of Linear Algebra I Session 13
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver)
Jacobs University, Fall 2022
2. Derivatives
2.2 Applications of differentiation

Topic 2.2.B: Graph sketching
Goal: Find as many qualitative features of the graph of a function as possible using Calculus, applying the rules and methods we have covered so far.

Checklist:

1. Domain of $f: D(f)$
2. Intercepts (y-, x-intercept if passible)
3. Horizontal asymptotes $\left(\lim _{x \rightarrow \pm \infty} f(x)\right)$
4. Vertical asymptotes
$\lim _{x \rightarrow x_{0}} f(x)$ if x_{0} is a boundary point of $S(f)$
$\left(\lim _{x \rightarrow x_{0}} f(x)\right.$ and $\lim _{x \nrightarrow x_{0}} f(x)$ if possible and not the same)
5. First derivative: Critical points, intervals where f is in-/decreasing
6. Second derivative: Points of inflection, intervals where of is concave up/down

Calculus and Elements of Linear Algebra I Session 13
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver) J jacobs University, Fall 2022
2. Derivatives
2.2 Applications of differentiation

Topic 2.2.B: Graph sketching
Example: $\quad f(x)=x^{4}-6 x^{3}=x^{3}(x-6)$

1. $\quad D(f)=\mathbb{R}$ (all real numbers)
2. y-intercept: set $x=0$

$$
\Rightarrow f(0)=0 \cdot(0-6)=0
$$

so $x=y=0$ is both x - and y-intercept
another x-intercept: set $y=0$

$$
\Rightarrow \quad 0=x^{3}(x-6)
$$

$$
\Rightarrow y=0 \text { of } x=0 \text { or }(x-6)=0 \Rightarrow x=6
$$

3. $\lim _{x \rightarrow \infty} f(x)=\infty$ and $\lim _{x \rightarrow-\infty} f(x)=\infty$ $\left(\begin{array}{rl}\text { as } x^{3} & \rightarrow \infty \text { and } \\ x-6 & \rightarrow \infty \text { for } x \rightarrow \infty\end{array}\right) \quad\left(\begin{array}{rl}\text { as } x^{3} & \rightarrow-\infty \\ \text { and } \\ x-6 & \rightarrow-\infty\end{array}\right)$ for $\left.x \rightarrow-\infty\right) ~$
4. No vertical asymptotes because $D(f)=\mathbb{R}$
5. $f^{\prime}(x)=4 x^{3}-6.3 x^{2}=\underbrace{2 x^{2}}(2 x-9)$ need to check sign of $2 x-9>0$ for $x \neq 0$
$\Rightarrow f^{\prime}(x) \leqslant 0$ for $2 x-9 \leqslant 0$, so $2 x \leqslant 9$ or $x \leqslant \frac{9}{2}$
$f^{\prime}(x)>0$ for $2 x-9>0$, so $2 x>9$ or $x>\frac{9}{2}$
$\Rightarrow f$ has min. at $x=\frac{9}{2}, y=f\left(\frac{9}{2}\right)=-136.6875$ with $f^{\prime}\left(\frac{9}{2}\right)=0$

Note: Another critical point is at $x=0$ as $2 x^{2}=0$ for $x=0$.
But it is neither min. nor max. as
$\bar{f}^{\prime}(x)$ does not switch sign there.
6. $f^{\prime \prime}(x)=\left(6 x^{3}-18 x^{2}\right)^{\prime}=12 x^{2}-36 x$

$$
=12 x(x-3)
$$

Find x for which $f^{\prime \prime}(x)=0$ and then check signs of factors around these x values.

$$
f^{\prime \prime}(x) \stackrel{!}{=} 0 \stackrel{!}{=} 12 x(x-3) \text {, so for } x=0 \text { and } x=3
$$

$\frac{\operatorname{mon}, \text { anon, } \cos }{x=0}$
Check sign: If $x<0,12 x<0 \& x-3<0$

$$
\Rightarrow \quad f^{\prime \prime}(x)>0
$$

$\Rightarrow f$ is concave up or convex

$$
\begin{aligned}
& \text { If } x \in(0,3), 12 x>0 \& x-3<0 \\
& \Rightarrow f^{a}(x)<0
\end{aligned}
$$

$\Rightarrow f$ is concave down or just concave

$$
\begin{aligned}
& \text { If } x>3,12 x>0 \quad \& x-3>0 \\
& \Rightarrow f^{\prime \prime}(x)>0
\end{aligned}
$$

$\Rightarrow f$ is concave up or conex
\Rightarrow points of inflection at $x=O(y=f(0)=0)$ and

$$
x=3^{v}\left(y^{\prime}=f(3)=-81\right)
$$

Sketch: Different scale for x - and y-axis!

