Calculus and Elements of Linear Algebra I Session 20
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver)
Jacobs University, fall 2022
5. Vectors \& vector spaces

Topic 5. A: Introduction to vectors \& vector operations
Vectors in Euclidean space \mathbb{R}^{n}, with $n=2,3$ mostly (ie. common physical $2 D$ and $3 D$ space)

- A quantity with magnitude and direction
- Can be thought of specifying a position (displacement of origin) or displacement. but generally not both at the same time
- Is represented by coordinates

$$
v=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \leftarrow \text { components or entries }
$$

\checkmark column vector (default form of)

- Notation: \vec{v}, \underline{v}, boldface v vector

In the following: no special indication!
(should be clear from context)

- Two basic operations:

1) Addition / Subtraction

$$
v+w=\left(\begin{array}{l}
v_{1}+w_{1} \\
v_{2}+w_{2} \\
v_{3}+w_{3}
\end{array}\right)
$$

2) Scalar multiplication
$\lambda v=\left(\begin{array}{l}\lambda v_{1} \\ \lambda v_{2} \\ \lambda v_{3}\end{array}\right)$ with scalar $\lambda \in \mathbb{R}($ or even $\mathbb{C})$

These operations obey the usual arithmetic rules. More details will follow for vector spaces

Ex:- Point on a line segment

$$
a+(b-a)=b
$$

Suppose P is located a fraction λ of the length of the line segment from A to $B(|\overline{A B}|>0)$.

$$
\Rightarrow \quad p=a+\lambda(b-a)=(1-\lambda) a+\lambda b
$$

for $\lambda \in[0,1]$
This is called a convex combination, as the non-negative coefficients λ and $(1-\lambda)$ sum to 1.

Calculus and Elements of Linear Algebra I Session 20
Prof. Sören Petrat, Dr. Stephan guricke (based on lecture Jacobs University, fall 2022
5. Vectors \& vector spaces

Topic 5.A: Introduction to vectors \& vector operations

Magnitude or length of a vector:

$$
|v|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}} \quad \text { for } \quad v \in \mathbb{R}^{3}
$$

Unit vector, i.e. with length 1 , in direction of $v \neq 0$: $\hat{v}=\frac{v}{|v|} \Rightarrow|\hat{v}|=1$ (other notations possible)

It encodes only direction information

Polar decomposition: $\quad v=|v| \hat{v}$
length" "direction
(scalar)

Scalar product or inner product or dot product:

$$
u \cdot v=|u||v| \cos \theta \quad \text {, with } \theta \text { as }
$$

both are vectors,
so not "normal" angle between u and u multiplication

The " is often printed larger than for "normal" multiplication between two scalars or a vector and a scalar, for which multiplication signs are often not written at all, e.g. $\lambda v, 5 x$ etc.
When two vectors are involved, means scalar product.

Also:

$$
\begin{aligned}
u \cdot v & =u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} \text { for } u, v \in \mathbb{R}^{3} \\
& =u^{\top} v
\end{aligned}
$$

where u^{\top} is row vector $\left(u_{1}, u_{2}, u_{3}\right)$ and τ stands for transpose. We'll discuss this later.

Note: $u \cdot v=0$, then u is perpendicular to $v, u \perp v$, as $\cos 90^{\circ}=\cos 270^{\circ}=0$
(with the understanding that $\vec{O} \perp \vec{v}$ for) any $v \in \mathbb{R}^{n}$

Sketch:

$\Rightarrow|u||v| \cos \theta$ is the scaled projection of u onto u (or other way around)
projection of u onto v

Remarte: If u, v have complex entries, then

$$
\begin{aligned}
u \cdot v & =u_{1}^{*} v_{1}+u_{2}^{*} v_{2}+u_{3}^{*} v_{3} \quad u, v \in \mathbb{C}^{3} \\
& =u^{H} v
\end{aligned}
$$

where u^{H} is the complex conjugate transpose and ${ }^{H}$ stands for Hermitian.

We then have $u \circ v=(v \cdot u)^{*}$
In all cases: $\quad|u|^{2}=u \cdot u$
always $\in \mathbb{R}$ since $u \cdot u=(u \cdot u)^{*}$ for $u \in \mathbb{C}^{n}$ and therefore $u \cdot u \in \mathbb{R}$

Calculus and Elements of Linear Algebra I Session 20
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver)
Jacobs University, fall 2022
5. Vectors \& vector spaces

Topic 5.A: Introduction to vectors \& vector operations
Cross product in \mathbb{R}^{3} :

$$
|u \times v|=|u||v| \sin \theta
$$

in the direction that is perpendicular to both u and v with the convention that $u \times v, u$, and u are a right-handed system

using fingers of your right hand
In a left-handed system, the vector (the thumb) would point into rather than out of the page.

Coordinate expression:

$$
\begin{aligned}
& \underset{\sim}{u} \underset{\substack{7 \\
\text { again, when } \\
\text { using two vectors }}}{ }\left(\begin{array}{l}
u_{2} v_{3}-u_{3} v_{2} \\
u_{3} v_{1}-u_{1} v_{3} \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right) \leftarrow \text { index } 2,3-3,2 \\
& \leftarrow \text { index } 3,1-1,3 \\
& \leftarrow \text { index 1,2-2,1 }
\end{aligned}
$$

One way to memorize:

The outcome is a vector rather than a scalar as was the case for the scalar product.

If u and u are parallel, ie. $\theta=0^{\circ}$ or 180°, $\sin \theta=0$, and so the length of $u \times v$ is
zero and $u \times v=\overrightarrow{0}$ the zero vector (not just the number 0).

Properties: $\cdot(u+v) \times \omega=u \times w+v \times w$

- $u \times v=-v \times u$
- $u \times(v \times w) \neq(u \times v) \times w$

