Calculus and Elements of Linear Algebra I Session 21
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver) Jacobs University, fall 2022
5. Vectors \& vector spaces

Topic 5.B: Lines, planes and vector spaces
Equation of line

line

$$
x=a+\lambda v, \lambda \in \mathbb{R}
$$

vector of point on line

Parametric representation of the line with parameter λ

Ex:: Find the equation of the line through a and b :

Take a as reference point
Take direction vector $v=b-a$ (amplitude of vector does not matter, as long as $v \neq \overrightarrow{0}$)

$$
\Rightarrow \quad x=a+\lambda(b-a)
$$

This is not a unique line representation. Other choices are possible, e.g. switch 6 and a. We just need some point on the line and some vector in the direction of the line.

Note: Take the vectors $a \& b$ of points on the line, the vector v in the direction of the line.
x is on the line if

$$
x-a \| v
$$

\uparrow parallel to

$$
\Leftrightarrow(x-a) \|(a-b)
$$

$$
\Leftrightarrow(x-a)_{\uparrow} \times(a-b)=0 \quad \text { (cross product }=0 \text { if }, ~ v e c t o r s \text { are parallel }, ~
$$ vectors are parallel, and max. if vectors are perpendicular)

Calculus and Elements of Linear Algebra I Session 21
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver)
Jacobs University, Fall 2022
5. Vectors \& vector spaces

Topic 5.B: Lines, planes and vector spaces

Equations of planes
Parametric equation of the plane
Any set of two (independent, ie. in this case non-parallel) linear equations in three dimensions defines a plane.

Normal equation of a plane
Normal vector to a plane is a vector pointing away from the plane in a right angle.

For normal vector

$$
(x-a) \perp n \text { for any } x \text { on }
$$ plane and some a on plane

$$
\Leftrightarrow(x-a) \cdot n=0
$$

Conversion of equations from one form to the other

1) From parametric representation to normal representation

We have $x=a+\lambda u+\mu v$
Set $n=u \times v$

so we get

$$
(x-a) \cdot n=0
$$

2) From a general plane equation to normal representation

An equation of a plane has the general form (as extension of equation of a line)

$$
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}=\beta=\alpha \cdot x
$$

with some fixed coefficients $\alpha_{1}, \alpha_{2}, \alpha_{3}$ given by the vector

$$
\alpha=\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right) \in \mathbb{R}^{3}
$$

and the fixed scalar $\beta \in \mathbb{R}$, s.t. all vectors

$$
x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { fulfilling the }
$$

equation are pointing to points on the plane.
We take $n=\alpha=\left(\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right)$ and pick a point a s.t. $\beta=n \cdot a$, e.g. $a=\beta \frac{n}{|n|^{2}}$

$$
\Rightarrow a \cdot n=\beta \frac{n}{|n|^{2}} \cdot n=\beta \frac{n \cdot n}{|n|^{2}}=1=\beta
$$

We can now show that $n \perp(x-a)$, ie.
$n \cdot(x-a)=0$ for any x that follows
the equation :

$$
\begin{aligned}
&\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1}-a_{1} \\
x_{2}-a_{2} \\
x_{3}-a_{3}
\end{array}\right)=\alpha_{1}\left(x_{1}-a_{1}\right)+\alpha_{2}\left(x_{2}-a_{2}\right)+\alpha_{3}\left(x_{3}-a_{3}\right) \\
&= \underbrace{\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}}_{=\beta \text { by construction }}-\underbrace{\left(\alpha_{1} a_{1}+\alpha_{2} a_{2}+\alpha_{3} a_{3}\right)}_{\begin{array}{c}
\text { of a } \\
\text { on plane }
\end{array}} \\
&=\beta=0 \text { so } n \cdot(x-a)=0
\end{aligned}
$$

We call $n \cdot(x-a)=0$ or $n \cdot x=\beta$ with corresponding β and a also the point-normal form of the plane.

Ex: $\quad x_{1}+3 x_{2}-x_{3}=5$
\Rightarrow normal form $n \cdot x=5$ with

$$
n=\left(\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right)
$$

Calculus and Elements of Linear Algebra I Session 21
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver)
Jacobs University, fall 2022
5. Vectors \& vector spaces

Topic 5.B: Lines, planes and vector spaces
Vector spaces
A vector space is a abstract set of vectors that follows certain rules.
V is a vector space over \mathbb{R} (or \mathbb{C}) if
(i) V is closed under commutative and associative addition, ie.:
 (addition of vectors from U keeps them in U)
(ii) U is closed under distributive and associative scalar multiplication, ie.:

$$
\underset{(\text { or } \mathbb{C})}{: \mathbb{R} \times V \rightarrow V}
$$

with

$$
\left.\left.\left.\begin{array}{rl}
\lambda \cdot(a+b) & =\lambda a+\lambda b \\
(\lambda+\mu) \cdot a & =\lambda a+\mu a
\end{array}\right\} \forall \begin{array}{l}
\forall a, b \in U \\
\lambda \cdot(\mu \cdot a)
\end{array}\right\}(\lambda \mu \mu) \cdot a \quad \in V\right\} \mathbb{R}
$$

(multiplication of vectors from U with scalars from \mathbb{R} (or \mathbb{C}, if vector space is over \mathbb{C}) beeps them in V)
(iii) $\exists \quad 0 \in V: \quad a+0=a \quad \forall a \in V$
(neutral element of addition)
(iv)

$$
1 \cdot a=a \quad \forall a \in V
$$

$(1 \in \mathbb{R}($ and $\in \mathbb{C})$ is neutral scalar of scalar) multiplication

Notes: - 0 is cenique: Assume we have two different 0,0 and 0

$$
0+0=0 \quad \Rightarrow 0=0
$$

$=0+0=0$ are the same

- For every $a \in U$ there is $-a:=(-1) \cdot a$

$$
\Rightarrow a-a=0
$$

Indeed: $a-a=\underset{\sim}{(1-1)} \cdot a=0 \cdot a=0$

Examples:

- $V=\mathbb{R}^{n} \quad, n \in \mathbb{N}$
- $U=\mathbb{C}^{n}, n \in \mathbb{N}$
- $V=\{p: p$ polynomials of degree $\leq n\}$

Non-example:

- $V=\{p: p$ polynomials of degree $=n\}$
(has no necetral element of addition)

Calculus and Elements of Linear Algebra I Session 21
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver)
Jacobs University, fall 2022
5. Vectors \& vector spaces

Topic 5.B: Lines, planes and vector spaces

Def.: The vectors in $\left\{v_{n},-, v_{m}\right\}$ are linearly independent if

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{m} v_{m}=0 \text { implies }
$$

linear combination of $v_{i}, i=1,1, m$

$$
\alpha_{1}=\alpha_{2}=-=\alpha_{m}=0!
$$

a/b linearly dependent
(a is multiple of b)
a / b linearly independent

Def:: The set $\left\{b_{1}, \ldots, b_{n}\right\}$ is called a basis of U if
(i) For every $x \in V$ there are $\alpha_{1},, \alpha_{n} \in \mathbb{R}$ s.t. $\quad x=\alpha_{1} b_{1}+-+\alpha_{n} b_{n}$
(ii) This representation is unique.

If B is a basis of U, the vector $\left(\begin{array}{l}\alpha_{1} \\ 1 \\ \alpha_{n}\end{array}\right) \in \mathbb{R}^{n}$ is called the coordinate vector of x (given the basis B).

We can also write

$$
\begin{aligned}
x & =\sum_{i=1}^{m} \alpha_{i} b_{i} \text { or simply } \\
& =\sum_{i} \alpha_{i} b_{i}
\end{aligned}
$$

if the upper limit is obvious from context.
Condition (i) of a basis can be written as

$$
\forall x \in U \quad \exists \alpha_{1},-, \alpha_{n} \text { s.t. } x=\sum_{i} \alpha_{i} b_{i}
$$

or: $U=\operatorname{span}\left\{b_{1}, \ldots, b_{n}\right\}$
set of all linear combinations of the indicated vectors

Theorem: B is a basis \Rightarrow all vectors in B are linearly independent

Fact: If U has basis B that is finite (i.e. finite number of vectors) than every other basis has the same number of vectors n.
We say that the dimension of V is n or $\operatorname{dim} V=n$

