Calculus and Elements of Linear Algebra I Session 22
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver) Jacobs University, fall 2022
6. Matrices
6.1 Introduction to matrices and link to linear operators
6.1. A: Linear operations (transformations) on vector spaces

Def:- We call the operator $\mathcal{S : U} \rightarrow \mathrm{V}$ linear if
(i) $\mathcal{A}(v+u)=\Omega v+\Re u \quad \forall v, u \in U$
(ii) $A(\lambda v)=\lambda \mathcal{A}(u) \quad \forall \lambda \in \mathbb{R}, v \in V$
(or \mathbb{C})

Note: The line equation $f(x)=y=a x+b$ is only linear in this sense if $b=0$. For example, taking $b \neq 0$:

$$
f(\lambda x)=a^{\prime} \lambda x^{\prime}+b \neq a \lambda x+\lambda b=\lambda(a x+b)=\lambda f(x)
$$

In case of $b \neq 0$ we say affine linear
Basis representation:
Take a basis $B=\left\{b_{11}, \quad b_{n}\right\}$ of V, $v \in V$ with

$$
\begin{aligned}
& v=\sum_{j} \alpha_{j} b_{j} \quad, \quad \alpha_{j} \in \mathbb{R}, b_{j} \in U \\
\Rightarrow \quad A v & =A\left(\sum_{j} \alpha_{j} b_{j}\right) \quad \in U \\
& =\sum_{j} \alpha_{j} A b_{j} \quad \text { (using definition) }
\end{aligned}
$$

Now suppose, since $\nexists v=w \in V$,

$$
A_{v}=\sum_{i} \beta_{i} b_{i} \quad, \beta_{i} \in \mathbb{R}
$$

and also, since $A b_{j}=c_{j} \in V$,

$$
A b_{j}=\sum_{i} a_{i j} b_{i} \quad, a_{i j} \in \mathbb{R}
$$

T different coefficients for different b_{j}, as each $A b_{j}$ is a different vector in V

$$
\begin{aligned}
\Rightarrow A v & =\sum_{i} \beta_{i} b_{i}=\sum_{j} \alpha_{j} A b_{j}=\sum_{j} \alpha_{j} \sum_{i} a_{i j} b_{i} \\
& =\sum_{j} \sum_{i} \alpha_{j} a_{i j} b_{i}=\sum_{i, j} a_{i j} \alpha_{j} b_{i}
\end{aligned}
$$

$\Rightarrow \beta_{i}=\sum_{j} a_{i j} \alpha_{j}$ by uniqueness of representation

$$
\begin{aligned}
& \beta=\left(\begin{array}{c}
\beta_{1} \\
1 \\
\beta_{n}
\end{array}\right), \alpha=\left(\begin{array}{c}
\alpha_{1} \\
1 \\
\alpha_{n}
\end{array}\right) \\
& A=\left(\begin{array}{cc}
a_{11} & a_{1 n} \\
1 & a_{n n} \\
a_{n 1}
\end{array}\right)
\end{aligned}
$$

is a matrix

We introduce the notation

$$
\beta=A_{\pi} \alpha
$$

matrix (-vector)
multiplication
Ex::

$$
A=\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right) \quad, \quad \alpha=\binom{1}{2}
$$

$$
\beta=A \alpha=\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right)\binom{1}{2}
$$

$$
\beta=A \alpha=\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right)\binom{1}{2}=\binom{2 \cdot 1+1 \cdot 2}{3 \cdot 1+2 \cdot 2} \begin{aligned}
& \text { hst row } \\
& \text { times } \alpha \\
& \text { Ind row } \\
& \text { times } \alpha_{1}
\end{aligned}
$$

with times as in scalar product.

Calculus and Elements of Linear Algebra I Session 22
Prof. Sören Petrat, Dr. Stephanguricke (based on lecture notes by Marcel Oliver) Jacobs University, fall 2022
6. Matrices
6.1 Introduction to matrices and link to linear operators
6.1. A: Linear operations (transformations) on vector spaces

Example: $\quad V=$ vector space of polynomials of degree ≤ 2 with coefficients in \mathbb{R}
$B=\left\{1, x, x^{2}\right\} \quad$ basis of V
$A=\frac{d}{d x}$ differential operator
To find corresponding matrix A, we need to look at how A affects the basis vectors $1, x, x^{2}$

We can then use $A b_{j}=\sum_{i} a_{i j} b_{i}$ to construct A via the $a_{i j}$

$$
\begin{array}{lll}
\Rightarrow A 1=0 & , A x=1 & A x^{2}=2 x \\
=0 \cdot 1+0 \cdot x+0 \cdot x^{2} & =1 \cdot 1+0 \cdot x+0 \cdot x^{2} & =0 \cdot 1+2 \cdot x+0 \cdot x^{2}
\end{array}
$$

So the matrix A has to have as entries the blue coefficients, with first row corresponding to $A 1$, second to $A x$ and third to $A x^{2}$.

$$
\Rightarrow \quad A=\left(\begin{array}{lll}
\begin{array}{ll}
\lambda x \\
0 & 1 \\
0 \\
0 & 0
\end{array} & 2 \\
0 & 0 & 0 \\
\uparrow & \uparrow
\end{array}\right)
$$

An $A x^{2}$
Now, take $\quad p=3 x^{2}-2 x+7$

$$
=3 \cdot x^{2}+(-2) \cdot x+1 \cdot 7
$$

So $\alpha=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)$ as coefficient vector of p
for the basis B.

$$
\frac{d p}{d x}=6 x-2=0 \cdot x^{2}+6 \cdot x+(-2) \cdot 1
$$

so β as a result of $A \alpha$ is $\beta=\left(\begin{array}{l}-2 \\ 6 \\ 0\end{array}\right)$
We can check:

$$
A \alpha=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right)=\left(\begin{array}{c}
0.1+(1 \cdot(-2)+0 \cdot 3 \\
0.1+0 \cdot(-2)+2 \cdot 3 \\
0 \cdot 1+0 \cdot(-2)+0 \cdot 3
\end{array}\right)=\left(\begin{array}{c}
-2 \\
6 \\
0
\end{array}\right) \quad \checkmark
$$

