Calculus and Elements of Linear Algebra I Session 23
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver) Jacobs University, Fall 2022
6. Matrices
6.1 Introduction to matrices and link to linear operators
6.1. B: Basic matrix operations

Correspondence between operators and matrices Operators A and B Matrices A and B

$$
\begin{array}{ll}
(A+B) v=A v+B v & (A+B)_{i j}=a_{i j}+b_{i j} \\
\mathcal{A}(\lambda v)=\lambda A v & (\lambda A)_{i j}=\lambda a_{i j}
\end{array}
$$

(with if as indices)
$\Rightarrow \mathcal{L}(v)$, the set of linear $\quad \mu(n \times n)$ is a vector
operators on U, is a
vector space
$(A B) v=A(B v)$
$A B$ where

$$
(A B)_{i j}=\sum_{k} a_{i k} b_{k j}
$$

makes sense for any

$$
\begin{gathered}
A \in M(n \times m), B \in M(m \times p) \\
A B \in M(n \times p)
\end{gathered}
$$

$\binom{$ Matrix multiplication, }{ more details later }

Transpose of matrix:
$\left(A^{\top}\right)_{i j}=\left(a_{j i}\right) \quad$ switching columns
e.g.: $\left(\begin{array}{lll}1 & 1 & 3 \\ 2 & 0 & 1\end{array}\right)^{\top}=\left(\begin{array}{ll}1 & 2 \\ 1 & 0 \\ 3 & 1\end{array}\right)$ and rows

In particular: $\quad x^{r} \cdot y=x^{\top} y=\left(x_{1}, \ldots_{1}, x_{n}\right)\left(\begin{array}{c}y_{1} \\ 1 \\ y_{n}\end{array}\right)$

$$
=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}
$$

For matrices with complex entries $\left(A \in \mathbb{C}^{n \times m}\right)$:
Hermitian conjugate:
scalar product complex vectors

$$
A^{H}=\left(A^{*}\right)^{\top}, \quad x \cdot y=x^{\text {scalar product }} y
$$

e.g:: $\left(\begin{array}{cc}i & -i \\ 1 & 2\end{array}\right)^{H}=\left(\begin{array}{cc}-i & i \\ 1 & 2\end{array}\right)^{\top}=\left(\begin{array}{cc}-i & 1 \\ i & 2\end{array}\right)$

Fact: $\quad(A B)^{\top}=B^{\top} A^{\top},(A B)^{H}=\mathbb{B}^{H} A^{H}$
(Proof: Try yourself)

Calculus and Elements of Linear Algebra I Session 23
Prof. Sören Petrat, Dr. Stephanguricke (based on lecture notes by Marcel Oliver)
Jacobs University, fall 2022
6. Matrices
6.1 Introduction to matrices and link to linear operators
6.1. B: Basic matrix operations

Matrix multiplication

$$
\begin{array}{ll}
A=\left(a_{i j}\right) & , i=1 \ldots, n \quad n: \# \text { rows } \\
& j=1, \ldots, m \quad m: \# \text { columns } A \\
B\left(b_{j k}\right) & , j=1, \ldots, m \\
k=1, \ldots
\end{array}
$$

Then: $\quad(A B)_{i k}=\sum_{j=1} a_{i j} b_{j k}$
Ex: (7)

$$
\begin{aligned}
& (\begin{array}{cc}
\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \\
A
\end{array} \underbrace{\left(\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right)}_{B}=\left(\begin{array}{cc}
\left.\begin{array}{cc}
10=2 & =4 \\
0.0+1-2 & 1-1+1 \cdot-3
\end{array}\right) \\
&
\end{array}\right) \\
& \left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
3 & 3
\end{array}\right)=\left(\begin{array}{cc}
2 & 4 \\
-1-0+1 \cdot-2 & -1-1+1 \cdot 3 \\
\frac{11}{2} & \frac{1}{2}
\end{array}\right)
\end{aligned}
$$

$$
=\left(\begin{array}{ll}
2 & 4 \\
2 & 2
\end{array}\right)
$$

(2)

$$
\begin{aligned}
& \left(\begin{array}{ccc}
2 & 1 & 3 \\
-1 & 0 & 2
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & -1 & 4 \\
1 & 2 & 1 & 5 \\
1 & 0 & 2 & 6
\end{array}\right)= \\
& \left(\begin{array}{lll}
2 & 1 & 3 \\
318 & 0 & 2
\end{array}\right)\left(\begin{array}{lll}
10 & 10 & -1 \\
0 & 4 \\
1 & 20 & 1 \\
0 & 0 & 5 \\
0 & 0 & 6
\end{array}\right)=
\end{aligned}
$$

$$
\left.\begin{array}{l}
=\left(\begin{array}{cccc}
=6 & " 4 & " 5 & " 31 \\
2 \cdot 1+1 \cdot 1+3 \cdot 1 & 2 \cdot 1+1 \cdot 2+3 \cdot 0 & 2 \cdot(-1)+1 \cdot 1+3 \cdot 2 & 2 \cdot 4+1 \cdot 5+3 \cdot 6 \\
-1 \cdot 1+1 \cdot 0+2 \cdot 1 & -1 \cdot 1+0 \cdot 2+2 \cdot 0 & (-1) \cdot(-1)+0 \cdot 1+2 \cdot 2 & (-1) \cdot 4+0 \cdot 5+2 \cdot 6
\end{array}\right) \\
11 \\
1
\end{array}\right)
$$

Note: $\quad A B \neq B A$ in general! (BA might not even exist due to dimension, as in case above)

