Calculus and Elements of Linear Algebra I Session 26
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver)
J Jacobs University, Fall 2022
6. Matrices
6.2 Solving systems of linear equations

Topic 6.2. C: Inverse of a matrix
We have $A x=b \quad, A \in M(n \times n), b \in \mathbb{R}^{n}$
If A is invertible, we can do $x=A^{-1} b$ with A^{-1} the inverse of A.

- $A A^{-1}=I$ with I the identity matrix

$$
I=\left(\begin{array}{cc}
1 & \\
& 0 \\
0 & 1
\end{array}\right) \in M(n \times n)
$$

$$
A^{-1} A=I
$$

- A^{-1} is unique if it exists.
- A^{-1} exists $\Leftrightarrow \operatorname{rank} A=n \Leftrightarrow$ every row (column) (full rank) has a pivot
$\Leftrightarrow A x=b$ has a unique solution for every $b \in \mathbb{R}^{n}$
(many more \Leftrightarrow, for example, A^{-1} exists \Leftrightarrow all columns (rows) of A are linearly independent)
\Rightarrow if $B \in M(n \times n)$ with the property $A B=I$, then $B=A^{-1}$
- $\left(A^{-1}\right)^{-1}=A ;$ check: $\left(A^{-1}\right)^{-1} A^{-1}=I$ because $\left(A^{-1}\right)^{-1}$ is inverse of A^{-1}

$$
\Rightarrow B A^{-1}=I \Rightarrow B=A \text { by }
$$

unique solvability and $A A^{-1}=I$
rules for transpose: $(A B)^{T}=B^{\top} A^{\top}$

- $\left(A^{-1}\right)^{\top}=\left(A^{\top}\right)^{-1}$ i check:

$$
\begin{aligned}
& \underbrace{\left(A^{-1}\right)^{\top}}_{B} A^{\top} \stackrel{\downarrow}{=}\left(A A^{-1}\right)^{\top}=I^{\top} \\
& \Rightarrow B=\left(A^{\top}\right)^{-1}=I
\end{aligned}
$$

- $(A B)^{-1}=B^{-1} A^{-1}$; check:

$$
\begin{aligned}
\underbrace{B^{-1} A^{-1} A}_{C} B & =B^{-1} I B \\
& =B^{-1} B=I
\end{aligned}
$$

$$
\Rightarrow C=(A B)^{-1}
$$

Calculus and Elements of Linear Algebra I Session 26
Prof. Sören Petrat, Dr. Stephan guricke (based on lecture notes by Marcel Oliver) Jacobs University, fall 2022
6. Matrices
6.2 Solving systems of linear equations

Topic 6.2. C: Inverse of a matrix
We are trying to solve $A x=6$. Let A^{-1} be the inverse of $A \in M(n \times n)$.
Then:

$$
x=A^{-1} b=A^{-1}\left(b_{1} e_{1}^{\mathbb{R}_{6}}+b_{2} e_{2}^{n} e_{2}+\ldots+b_{n} e_{n}\right)_{1}
$$

where $e_{i}=(0,-, 0,1,0,-, 0)^{\top} \in \mathbb{R}^{n}$
${ }^{1}$ th position
so $\quad x=b_{1} A^{-1} e_{1}+\ldots+b_{n} A^{-1} e_{n}$
From this we get the following procedure to find A^{-1} :

$$
(A \mid I) \xrightarrow{\text { row operations }}\left(I \mid A^{-1}\right)
$$

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
0 & \frac{1}{2} & -\frac{1}{2} \\
1 & 0 & 1 \\
2 & \frac{1}{2} & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc|ccc}
0 & \frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
2 & \frac{1}{2} & 1 & 0 & 0 & 1
\end{array}\right) \\
& \xrightarrow[2 R 1 \rightarrow R 2]{R 2 \rightarrow R 1}\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & -1 & 2 & 0 & 0 \\
2 & \frac{1}{2} & 1 & 0 & 0 & 1
\end{array}\right) \\
& \xrightarrow{R 3-2 R 1 \rightarrow R 3}\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & -1 & 2 & 0 & 0 \\
0 & 1 & -1 & 0 & -2 & 1
\end{array}\right) \\
& \xrightarrow[G-2 R 3 \rightarrow R 3]{R 3-\frac{1}{2} R 2 \rightarrow R 3}\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & -1 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 4 & -2
\end{array}\right) \\
& \xrightarrow[R_{1}-R 3 \rightarrow R 1]{R 2+R 3 \rightarrow R 3}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -2 & -3 & 2 \\
0 & 1 & 0 & 4 & 4 & -2 \\
0 & 0 & 1 & 2 & 4 & -2
\end{array}\right)
\end{aligned}
$$

We can check:

$$
\begin{aligned}
A A^{-1} & =\left(\begin{array}{ccc}
0 & \frac{1}{2} & -\frac{1}{2} \\
1 & 0 & 1 \\
2 & \frac{1}{2} & 1
\end{array}\right)\left(\begin{array}{ccc}
-2 & -3 & 2 \\
4 & 4 & -2 \\
2 & 4 & -2
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\frac{4}{2}-\frac{2}{2} & \frac{4}{2}-\frac{4}{2} & -\frac{2}{2}+\frac{2}{2} \\
-2+2 & -3+4 & 2-2 \\
-4+\frac{4}{2}+2 & -6+\frac{4}{2}+4 & 4-\frac{2}{2}-2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Calculus and Elements of Linear Algebra I Session 26
Prof. Sören Petrat, Dr. Stephanguricke (based on lecture notes by Marcel Oliver) Jacobs University, Fall 2022
6. Matrices
6.2 Soloing systems of linear equations

Topic 6.2. C: Inverse of a matrix
Application: Change of basis
Take the vector space $U=\operatorname{span}\left\{\begin{array}{lll}1, & x_{1} & x^{2} \\ n_{1}\end{array}\right\}$,

$$
e_{1} e_{2} e_{3}
$$

i.e. the vector space of polynomials of degree ≤ 2.

Take a second basis of this vector space

$$
b_{1}=2 x-1, \quad b_{2}=2 x+1+x^{2}, \quad b_{3}=x^{2}-1
$$

(you can show that any polynomial of degree $\leqslant 2$ can be constructed by a linear combination of b_{1}, b_{2}, and b_{3})

This new basis has coordinates with respect to e_{1}, e_{2}, e_{3} :

$$
\underbrace{\left(\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right)}_{=v_{1}}, \underbrace{\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)}_{=v_{2}}, \underbrace{\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)}_{=v_{3}}, \begin{aligned}
& \\
&=-1+2 x \\
&=b_{1}
\end{aligned}
$$

A change of basis can be seen as a change of perspective.
A simplified example is whether one gives directions in metres or miles, or with respect to left and right or East and West.
If $p(x)$ has coordinates $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ w.r.t. e_{1}, e_{2}, e_{3}, what are its coordinates y w.r.t. b_{1}, b_{2}, b_{3} ?

We have

$$
x=y_{1} b_{1}+y_{2} b_{2}+y_{3} b_{3}
$$

or $S_{y}=x \quad$ with $S=\left(\begin{array}{ccc}\mid & 1 & 1 \\ v_{1} & v_{2} & v_{3} \\ \mid & 1 & 1\end{array}\right)$
b_{1} given
as vector
w.r.t. e_{1}, e_{2}, e_{3}

$$
\Rightarrow y=S^{-1} x
$$

invertible, since columns form a bass! (i.e. are linearly independent

To compute S^{-1} :

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
-1 & 1 & -1 & 1 & 0 & 0 \\
2 & 2 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow[2 R_{1}+R_{2} \rightarrow R_{2}]{-R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|ccc}
1 & -1 & 1 & -1 & 0 & 0 \\
0 & 4 & -2 & 2 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \\
& \xrightarrow[R 3 \rightarrow R 2]{R 3+R 1 \rightarrow R_{1}}\left(\begin{array}{ccc|ccc}
1 & 0 & 2 & -1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 4 & -2 & 2 & 1 & 0
\end{array}\right) \\
& \xrightarrow{R 3-4 R 2 \rightarrow R 3}\left(\begin{array}{ccc|ccc}
1 & 0 & 2 & -1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 4 & -2 & 2 & 1 & 0
\end{array}\right) \\
& \xrightarrow{R 3-4 R 2 \rightarrow R 3}\left(\begin{array}{ccc|ccc}
1 & 0 & 2 & -1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & -6 & 2 & 1 & -4
\end{array}\right) \\
& \xrightarrow{\frac{R 3}{-6} \rightarrow R 3}\left(\begin{array}{lll|rrl}
1 & 0 & 2 & -1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & -\frac{1}{3} & -\frac{1}{6} & \frac{2}{3}
\end{array}\right) \\
& \left.1 \begin{array}{llllll}
1 & 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2}
\end{array}-\frac{1}{2}\right)
\end{aligned}
$$

$$
\underbrace{\underset{R 1-2 R 3 \rightarrow R 1}{R 2-R 3 \rightarrow R 2}}_{=S^{-1}}\left(\begin{array}{lll|ccc}
0 & 1 & 0 & \frac{1}{3} & \frac{1}{6} & \frac{1}{3} \\
0 & 0 & 1 & -\frac{1}{3} & -\frac{1}{6} & \frac{2}{3}
\end{array}\right)
$$

