Session 8 Calculus and Elements of Linear Algebra I Prof. Soren Petrat, Dr. Stephan Juricle (based on lecture notes by Marcel Oliver) Jacobs University, Fall 2022 2. Drivatives 2.1 Introduction to derivatives and their properties Topic 2.1.A: General definition Derivative gives the slope of a function at a certain point. E<u>x.'</u> f(xoth) Cline $f(x_o+h)-f(x_o)$ $y(x) = f(x_0)$ f(xo) m(h) \times Xth h X

If h is small, the line y can be seen as a
linear approximation to
$$f(x)$$
 at x.
Idea: Let $h \neq 0$, expect that $m(h)$ converges,
and the limit can be interpreted
as the slope of f at point x.
(slope of tangent to f at x.)
Def.: The derivative of $f:(a_1b) \rightarrow \mathbb{R}$
at a point $x \in (a_1b)$ is
 $f'(x) = \lim_{h \neq 0} \frac{f(x+h) - f(x)}{h}$
Ex: $f(x) = \sin(x)$

U

• •

<u>ر</u>

$$f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} \quad (using definition)$$

and use:
$$\sin(x+h) = \sin x \cdot \cosh + \cos x \cdot \sinh addition$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \left(\sin x \frac{\cosh - 1}{h} + \cos x \frac{\sinh h}{h} \right)$$

$$\Rightarrow \sin'(x) = \cos(x)$$

$$\cos'(x) = -\sin(x) \qquad by similar arguement$$

Calculus and Elements of dinear Algebra I Session 8
Prof. Stren Petrat, Dr. Stephan Juricle (based on lacture
notes by Marcel Oliver)
Jacobs University, Fall 2022
2. Darivatives
2.1 Introduction to derivatives and their properties
Topic 2.1. A: General definition
Def: f is differentiable if it is diff'able at
every
$$x \in (a, b)$$

Remarke: We can also write
 $f'(x) = \lim_{R \to x} \frac{f(R) - f(x)}{R - x}$
and $f'(x) = \frac{df}{dx} = f = Df$
The derivative can be oven as the slope of f at
point x' or 'instantaneous rate of change at x'.

Another perspective on derivatives follows from the tangent line approximation. We try to approximate the function of close to x by its tangent: v f(x) $\ell(x)$ $\ell(x) = \ell(x_o) + \ell'(x_o)(x - x_o)$ can be used to approx. f(x1) $\mathcal{L}(x_n) = f(x_0) \neq f'(x_0) (x_n - x_0)$ ×, close to x. ×. $\approx f(x_n)$ Relative error of approximation by tangent line distance in y for point x1: $\frac{f(x_{n}) - f(x_{n})}{f(x_{n}) - f(x_{n})} = \frac{f(x_{n}) - (f(x_{n}) + f'(x_{n})(x_{n} - x_{n}))}{f(x_{n}) - f(x_{n})}$ $X_{1} - X_{0}$ $x_1 - x_0$ distance in X $= \frac{f(x_n) - f(x_0)}{x_n - x_0} - f'(x_0) \xrightarrow{x_n \to x_0} 0 \quad \text{if } f \text{ is diff'able}$ of x $\xrightarrow{\chi_{\bullet} \Rightarrow \chi_{0}} \begin{cases} \chi_{\bullet}(\chi_{\bullet}) \end{cases}$ if is diff able at xo (> For a diffable function, the relative error of the linear approximation is going to zero when approaching the point (x.) where the line is tangent to the function.

 \mathcal{U} V (> A diffable function is characterized by the fact that it can be approximated locally by a linear function

Counter example: {(x) = |x| art xo=0 no unique tangent! Here, relative error of approx. does not vanish as $x \to 0$ for any of the many possible tangent lines.