Calculus and Elements of Linear Algebra I Session 8 Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver) Jacobs University, Fall 2022
2. Derivatives
2.1 Introduction to derivatives and their properties

Topic 2.1.A: General definition
Derivative gives the slope of a function at a certain point.

If h is small, the line y can be seen as a linear approximation to $f(x)$ at x_{0}.

Idea: Let $h \rightarrow 0$, expect that $m(h)$ converges, and the limit can be interpreted as the slope of f at point x_{0}. (slope of tangent to f at x_{0})

Def.: The derivative of $f:(a, b) \rightarrow \mathbb{R}$ at a point $x \in(a, b)$ is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Ex:: $f(x)=\sin (x)$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h} \quad \text { (using definition) }
$$

and use: $\sin (x+h)=\sin x \cdot \cosh +\cos x \cdot \sinh$ angle addition formula

$$
\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0}(\sin x \underbrace{\frac{\cos h-1}{h}}_{1.1}+\underbrace{\cos x \frac{\sin h}{h}})
$$

$$
\underset{h \rightarrow 0}{\stackrel{*}{*})} 0 \quad \underset{h \rightarrow 0}{\longrightarrow} \cos x
$$

Now, proof of (*):

$$
\text { because } \lim _{h \rightarrow 0} \frac{\sin h}{h}=1
$$

Tale $g(h)=\frac{1-\cos h}{h^{2}}$ and use $1-\cos h=2 \sin ^{2} \frac{h}{2}$

$$
\begin{aligned}
& =2 \frac{\sin ^{2} \frac{h}{2}}{h^{2}} \underset{h=2 y}{=} \underbrace{\substack{\sin y \rightarrow 0 \text { or } h \rightarrow 0}}_{\substack{\text { set } y=\frac{h}{2}} \frac{\sin ^{2} y}{(2 y)^{2}}=\frac{1}{2}(\underbrace{\left.\frac{\sin y}{y}\right)^{2}}}
\end{aligned}
$$

If $\lim _{h \rightarrow 0} \frac{1-\cos h}{h^{2}}=\frac{1}{2}$ then $\lim _{h \rightarrow 0} \frac{1-\cos h}{h}=0$
because $\lim _{h \rightarrow 0} \frac{1-\cos h}{h^{2}} \cdot h=\lim _{h \rightarrow 0}\left(\frac{1-\cos h}{h^{2}}\right) \cdot \lim _{h \rightarrow 0}(h)=\frac{1}{2} \cdot 0$
$\mathbb{N}_{h}=0$
$\frac{1}{2}$
and so $\lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0$
Conclusion: $f^{\prime}(x)=\lim _{h \rightarrow 0}(\underbrace{\sin x \frac{\cosh h}{h}}_{\rightarrow 0}+\underbrace{\cos x \frac{\sin h}{h}}_{\rightarrow \cos x})$

$$
=\cos x
$$

$$
\Rightarrow \sin ^{\prime}(x)=\cos (x)
$$

$\cos ^{\prime}(x)=-\sin (x)$ by similar arguement

You can use sketch to remember the sign

Calculus and Elements of Linear Algebra I Session 8
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver)
Jacobs University, Fall 2022
2. Derivatives
2.1 Introduction to derivatives and their properties

Topic 2.1.A: General definition

Def: $\quad f$ is differentiable if it is diff'able at every $x \in(a, b)$

Remark: We can also write

$$
f^{\prime}(x)=\lim _{q \rightarrow x} \frac{f(q)-f(x)}{q-x}
$$

and $f^{\prime}(x)=\frac{d f}{d x}=\dot{f}=D f$
The derivative can be seen as the "slope of f at point x " or "instantaneous rate of change at x ".

Another perspective on derivatives follows from the tangent line approximation.

We try to approximate the function f close to x by its tangent:

$$
l(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

can be used to approx. $f\left(x_{1}\right)$

$$
\begin{aligned}
l\left(x_{1}\right) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right) \\
& \approx f\left(x_{1}\right)
\end{aligned}
$$

Relative error of approximation by tangent line for point x_{1} :

$$
\overbrace{\underbrace{\overbrace{1}-x_{1})-l\left(x_{1}\right)}_{\text {distance in } x}}^{\text {(instance in } g}=\frac{f\left(x_{1}\right)-\left(f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)\right)}{x_{1}-x_{0}}
$$

$=\underbrace{\frac{f\left(x_{n}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}}-f^{\prime}\left(x_{0}\right) \quad \underset{x_{1} \rightarrow x_{0}}{\longrightarrow} 0$ if f is diff' able
$\underset{x_{1} \rightarrow x_{0}}{ } f^{\prime}\left(x_{0}\right)$ if f is diff 'able at x_{0}
\rightarrow For a diff'able function, the relative error of the linear approximation is going to zero when approaching the point $\left(x_{0}\right)$ where the line is tangent to the function.
\rightarrow A diff'able function is characterized by the fact that it can be approximated locally by a linear function

Cocenter example:

