Calculus and Elements of Linear Algebra I Session 9
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver)
Jacobs University, Fall 2022
2. Derivatives
2.1 Introduction to derivatives and their properties

Topic 2.1.B: Differentiation rules

Addition rule: If f^{\prime}, g^{\prime} exist, then $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$
Product rule: If f^{\prime}, g^{\prime} exist, then $(f \cdot g)^{\prime}(x)=f(x) \cdot g^{\prime}(x)+f^{\prime}(x) \cdot g(x)$
Proof product rule: $(f \cdot g)^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(f \cdot g)(x+h)-(f g)(x)}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{f(x+h) \cdot g(x+h)-f(x+h) \cdot g(x)+f(x+h) \cdot g(x)-f(x) \cdot g(x)}{h} \\
& =\underbrace{\lim _{h \rightarrow 0} f(x+h) \frac{g(x+h)-g(x)}{h}}_{n}+g(x) \underbrace{\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}}_{=f^{\prime}(x)}
\end{aligned}
$$

$$
\underbrace{\lim _{h \rightarrow 0} f(x+h)}_{=f(x)} \underbrace{\lim _{h \rightarrow 0} \frac{\frac{y(x+h)-g(x)}{h}}{h}}_{=g^{\prime}(x)}
$$

because
f is continuous

$$
=f(x) \cdot g^{\prime}(x)+f^{\prime}(x) \cdot g(x)
$$

Note: If derivative of f exists at $x \in(a, b)$, then f is continuous at x.
differentiability implies continuity" (but not the other way around)

Example: $|x|$ at $x=0$ is continuous but not diff' able

Diff. of constant: $\quad c \in \mathbb{R}$ is a constant: $c^{\prime}=0$
Multiplication with constant: $\left(c \cdot f^{\prime}\right)^{\prime}(x)=c f^{\prime}(x)$
$\begin{aligned} & \text { Quotient rule: } \\ & \left(\begin{array}{l}\text { if } g(x) \neq 0)\end{array}\right.\end{aligned} \quad\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x) \cdot g(x)-g^{\prime}(x) f(x)}{(g(x))^{2}}$

Proof quotient rale: $g(x) \cdot \frac{f(x)}{g(x)}=f(x) \quad$ if $\left.g(x) \neq 0\right)$

$$
\Rightarrow\left(g \cdot \frac{f}{g}\right)^{\prime}(x)=f^{\prime}(x)
$$

$$
\begin{aligned}
& \text { Product } g^{\prime}(x) \cdot\left(\frac{f}{g}\right)(x)+g(x) \cdot\left(\frac{f}{g}\right)^{\prime}(x)=f^{\prime}(x) \\
& \text { rale } \\
& \Rightarrow\left(\frac{f}{g}\right)^{\prime}(x)=\frac{1}{g(x)}\left(f^{\prime}(x)-g^{\prime}(x) \cdot\left(\frac{f}{g}\right)(x)\right)=\frac{g(x) f^{\prime}(x)-g^{\prime}(x) f^{(x)}}{(g(x))^{2}}
\end{aligned}
$$

Chain rule: $\quad(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
"Outer derivative times inner derivative"
Proof chain rule: in live lecture
Power rule: $n \in \mathbb{N},\left(x^{n}\right)^{l}=n x^{n-1}$

Proof power rule: Proof by induction

$$
\begin{aligned}
n=1: \quad x^{n}=x, \quad x^{\prime} & =\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h_{n}}{n}=1 \\
& =1 \cdot x^{0}
\end{aligned}=1 \cdot 1 \quad \begin{aligned}
n \rightarrow n+1:\left(x^{n+1}\right)^{\prime}=\left(x \cdot x^{n}\right)^{\prime} & =1 \cdot x^{n}+x \cdot\left(x^{n}\right)^{\prime} \\
& =x^{n}+x \cdot n x^{n-1} \\
& =x^{n}+n \cdot x^{n}=(n+1) x^{n}
\end{aligned}
$$

\rightarrow We can extend the power rule to rational exponents. Proof in live lecture.

$$
\left(x^{\frac{p}{q}}\right)^{\prime}=\frac{p}{q} x^{\frac{p}{q}-1} \quad, \text { for } p, q \in \mathbb{Z}
$$

It can be further extended to arbitrary $r \in \mathbb{R}$ "by continuity" (i.e. representing r as a limit of rational numbers).

$$
x^{r}=r x^{r-1} \quad, r \in \mathbb{R}
$$

Example differentiation rules:

$$
\begin{aligned}
& f(x)=\cos (4 x) \\
& f^{\prime}(x)=-\sin (4 x) \cdot 4 \cdot 1=-4 \sin (4 x)
\end{aligned}
$$

More examples in live lecture

Calculus and Elements of Linear Algebra I Session 9
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver)
Jacobs University, fall 2022
2. Derivatives
2.1 Introduction to derivatives and their properties

Topic 2.1.B: Differentiation rules
Derivative of exponential function

$$
\begin{array}{r}
\left(e^{x}\right)^{\prime}=\lim _{h \rightarrow 0} \underbrace{\frac{e^{x+h}-e^{x}}{h}=e^{x} \underbrace{\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}}} \\
=\frac{e^{x} \cdot e^{h}-e^{x}}{h}=e^{x} \frac{e^{h}-1}{h} \quad \text { (Proof more } \\
\text { complex } \\
\text { Analysis I) }
\end{array}
$$

So in short: $\left(e^{x}\right)^{\prime}=e^{x}$ (function and its gradient are the same)

Ex:: $\left(e^{5 x}\right)^{\prime}=e^{5 x} \cdot 5=5 e^{5 x}$

Derivative of inverse function
$f:(a, b) \longrightarrow \mathbb{R}$ diff' able, invertible on its range, with inverse $g=f^{-1}$
$g(f(x))=x \quad$ (definition of inverse)
Take derivative: $\quad g^{\prime}(f(x)) \cdot f^{\prime}(x)=1$ (chain rule)

Remark: From, e.g., Analys is I
of diff'able at x with $f^{\prime}(x) \neq 0$
$\Rightarrow g$ diff'able at $y=f(x)$]
Solve for $g^{\prime}(x)$:

$$
\begin{aligned}
& \text { or } g(x): \\
& g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}, \text { with } y=f(x) \\
& \Rightarrow \quad g^{\prime}(y)=\frac{1}{f^{\prime}(x)}=\frac{1}{f^{\prime}(g(y))}
\end{aligned}
$$

Ex:
(1) $\quad f(x)=x^{a}, \quad a>0$

$$
\begin{aligned}
f^{\prime}(x) & =a x^{a-1}, g(y)=y^{\frac{1}{a}}=x \\
g^{\prime}(y) & =\frac{1}{f^{\prime}(x)}=\frac{1}{a x^{a-1}} \quad x=y^{\frac{1}{a}}=\frac{1}{a\left(y^{\frac{1}{a}}\right)^{a-1}} \\
& =\frac{1}{a} y^{-\left(\frac{a-1}{a}\right)}=\frac{1}{a} y^{\frac{1}{a}-1}=\left(y^{\frac{1}{a}}\right)^{\prime}
\end{aligned}
$$

(2) $\quad f(x)=e^{x}, f^{\prime}(x)=e^{x}$

$$
\begin{aligned}
& g(y)=\ln y=x \\
& (\ln y)^{\prime}=\frac{1}{e^{x}}=\frac{1}{e^{\ln y}}=\frac{1}{y} \\
& \underset{\substack{\text { change } \\
\text { notation }}}{ }(\ln (x))^{\prime}=\frac{1}{x}
\end{aligned}
$$

(3) $f(x)=\tan x=\frac{\sin x}{\cos x}=y$

$$
f^{\prime}(x)=
$$

quotient

$$
=\frac{\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)}=1
$$

$a(a)=\arctan u=x \quad$ (inverse of \tan)

$$
\Omega(\arctan y)^{\prime}=\frac{1}{f^{\prime}(x)}=\cos ^{2} x
$$

with $y=\frac{\sin x}{\cos x} \Rightarrow y^{2}=\frac{\sin ^{2} x}{\cos ^{2} x}=\frac{1-\cos ^{2} x}{\cos ^{2} x}$

$$
\begin{aligned}
& \Rightarrow \cos ^{2} x \cdot y^{2}=1-\cos ^{2} x \\
& \Rightarrow \cos ^{2} x\left(1+y^{2}\right)^{2}=1 \\
& \Rightarrow \cos ^{2} x=\frac{1}{1+y^{2}} \\
& \Rightarrow(\arctan y)^{\prime}=\frac{1}{1+y^{2}}
\end{aligned}
$$

