Calculus and Elements of Linear Algebra I
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver)
Jacobs University, Fall 2022
Live lectures sessions $21 \& 22$
5. Vectors \& vector spaces
and
6. Matrices
6.1 Introduction to matrices and link to linear operators

Vector spaces
Examples: $\cdot V=\{$ continuous functions on $[0,1]\}$
Non-examples: - images with greyscale values

$$
0 \ldots 255
$$

(e.g. not closed under addition)

- probability vectors: $p=\left(p_{1},-, p_{n}\right), p_{i} \in[0,1]$

$$
p_{1}+\ldots+p_{n}=0
$$

(e.g. violated by scalar multiplication)

- \mathbb{R}^{3} where "addition" is the cross product.
(egg. not commutative)
Remember:
Theorem: B is a basis \Rightarrow all vectors in B are linearly independent

Proof: Suppose not. Then there exist α_{11}, α_{n} not all zeros s.t.

$$
0=\sum \alpha_{i} b_{i}
$$

but also

$$
0=0 . b_{1}+\ldots+0 . b_{n}
$$

This contradicts ceniquness of representation of 0 .
Matrices: Take example from session 22
$V=$ vector space of polynomials of degree ≤ 2 with
coefficients in \mathbb{R}
$A=\frac{d}{d x}$ differential operator
But we use $C=\left\{x^{2}-1, x^{2}+1, x\right\}$ as basis of V instead of $B=\left\{1, x, x^{2}\right\}$

To get $p=3 x^{2}-2 x+7$ in this basis, we need to conte:

$$
\begin{aligned}
& \alpha_{1}\left(x^{2}-1\right)+\alpha_{2}\left(x^{2}+1\right)+\alpha_{3} x=3 x^{2}-2 x+7 \\
& \left(\alpha_{1}+\alpha_{2}\right) x^{2}+\left(\alpha_{2}-\alpha_{1}\right) \cdot 1+\alpha_{3} x=3 x^{2}-2 x+7
\end{aligned}
$$

Compute coefficients:

$$
\left.\begin{array}{rl}
\alpha_{1}+\alpha_{2}=3 \\
\alpha_{2}-\alpha_{1}=7 \\
\alpha_{3}=-2
\end{array}\right\} 2 \alpha_{2}=10 \Rightarrow \alpha_{2}=5
$$

Here: $\quad \alpha=\left(\begin{array}{c}-2 \\ 5 \\ -2\end{array}\right)$

$$
\begin{aligned}
& A\left(x^{2}-1\right)=\frac{d}{d x}\left(x^{2}-1\right)=2 x=0 \cdot\left(x^{2}-1\right)+0 \cdot\left(x^{2}+1\right)+2 \cdot x \\
& A\left(x^{2}+1\right)=2 x=0 \cdot\left(x^{2}-1\right)+0 \cdot\left(x^{2}+1\right)+2 \cdot x \\
& f(x)=1=-\frac{1}{2}\left(x^{2}-1\right)+\frac{1}{2}\left(x^{2}+1\right)+0 \cdot x
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad A=\left(\begin{array}{ccc}
0 & 0 & -\frac{1}{2} \\
0 & 0 & \frac{1}{2} \\
2 & 2 & 0
\end{array}\right), A \alpha & =\left(\begin{array}{ccc}
0 & 0 & -\frac{1}{2} \\
0 & 0 & \frac{1}{2} \\
2 & 2 & 0
\end{array}\right)\left(\begin{array}{c}
-2 \\
5 \\
-2
\end{array}\right) \\
& =\left(\begin{array}{c}
0 \cdot-2+0 \cdot 5+\left(-\frac{1}{2}\right) \cdot(-2) \\
0 \cdot-2+0 \cdot 5+\frac{1}{2} \cdot(-2) \\
2 \cdot-2+2 \cdot 5+0 \cdot(-2)
\end{array}\right) \\
& =\left(\begin{array}{c}
1 \\
-1 \\
6
\end{array}\right) \text { as a vector. }
\end{aligned}
$$

This represents $1 \cdot\left(x^{2}-1\right)+(-1) \cdot\left(x^{2}+1\right)+6 x=6 x-2$

$$
=\frac{d p}{d x}
$$

