Calculus and Elements of Linear Algebra I
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver)
Jacobs University, fall 2022
Live lectures sessions $23 \& 24$
6. Matrices
6.1 Introduction to matrices and link to linear operators
6.2 Soloing systems of linear equations

Matrix -matrix multiplication:

$$
\left(\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
-1 & 5
\end{array}\right)
$$

Solving systems of linear equations:
We want to solve $A x=b$ with

$$
\left(\begin{array}{llll}
2 & -2 & -4 & -1
\end{array}\right)
$$

$$
A=\left(\begin{array}{rrrrr}
3 & -3 & -6 & 3 & 12 \\
3 & -3 & -6 & 2 & 11
\end{array}\right), \quad b=\binom{21}{18}
$$

Here, $x \in \mathbb{R}^{5}$ as $A \in M(3 \times 5)$, ie. we have more unknowns than equations (more columns than rows)
(T his is a so called underdetermined system, see next session, ie. if is underconstrained)

Augmented matrix:

$$
\begin{aligned}
& \left(\begin{array}{ccccc|c}
2 & -2 & -4 & -1 & 5 & 5 \\
3 & -3 & -6 & 3 & 12 & 21 \\
3 & -3 & -6 & 2 & 11 & 18
\end{array}\right) \xrightarrow[R 2]{R} \rightarrow R 1 \rightarrow R 2\left(\begin{array}{ccccc|c}
1 & -1 & -2 & 1 & 4 & 7 \\
2 & -2 & -4 & -1 & 5 & 5 \\
3 & -3 & -6 & 2 & 11 & 18
\end{array}\right) \\
& \begin{array}{ll}
R 2-2 R 1 \rightarrow R 2 \\
R 3-3 R 1 \rightarrow R 3
\end{array}\left(\begin{array}{ccccc|c}
1 & -1 & -2 & 1 & 4 & 7 \\
0 & 0 & 0 & -3 & -3 & -9 \\
0 & 0 & 0 & -1 & -1 & -3
\end{array}\right) \\
& \xrightarrow[R 1+R 3 \rightarrow R 1]{\frac{R 2}{-3} \rightarrow R 2}\left(\begin{array}{ccccc|c}
1 & -1 & -2 & 0 & 3 & 4 \\
0 & 0 & 0 & 1 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& R 3-\frac{R 2}{3} \rightarrow R 3
\end{aligned} \begin{aligned}
& \text { one equation does } \\
& \text { not contain additional } \\
& \text { information, ie. } 0=0
\end{aligned}
$$

Now, we fill in the matrix with additional free variables:

$$
\left(\begin{array}{ccccc|c}
1 & -1 & -2 & 0 & 3 & 4 \\
0 & 0 & 0 & 1 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \xrightarrow[\text { to diagonal }]{\text { according }}\left(\begin{array}{ccccc|c}
1 & -1 & -2 & 0 & 3 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

are called pivots "missing pivots
(more about pivots next week)
Solution is now: linearly independent solutions to the

Any such x with $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$ is a solution to $A x=b$

