Calculus and Elements of Linear Algebra I
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver)
Jacobs University, fall 2022
Live lectures sessions $25 \& 26$
6. Matrices
6.2 Soloing systems of linear equations

From last week's example lecture:
We want to solve $A x=b$ with

$$
A=\left(\begin{array}{ccccc}
2 & -2 & -4 & -1 & 5 \\
3 & -3 & -6 & 3 & 12 \\
3 & -3 & -6 & 2 & 11
\end{array}\right), \quad b=\left(\begin{array}{c}
5 \\
21 \\
18
\end{array}\right)
$$

and we get $\left(\begin{array}{ccccc|c}1 & -1 & -2 & 0 & 3 & 4 \\ 0 & 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \quad \begin{array}{r}\text { after Gaussian } \\ \text { elimination }\end{array}$
with two pivots
Rank-nullity theorem then states for $A \in M(3 \times 5)$:
$\operatorname{rank} A=2$ and $m=5$
so

$$
\text { nullity } A+\underbrace{\operatorname{rank} A}_{=2}=\underbrace{m}_{=5}
$$

\Rightarrow nullity $A=3$, i.e. we have a $3 D$ null space or kernel

We got the solution last week:

$$
x=\left(\begin{array}{l}
4 \\
0 \\
0 \\
3 \\
0
\end{array}\right)+\lambda_{1}(\underbrace{\left(\begin{array}{c}
-1 \\
-1 \\
0 \\
0 \\
0
\end{array}\right)}_{v_{1}}+\lambda_{2}(\begin{array}{c}
\left(\begin{array}{c}
-2 \\
0 \\
-1 \\
0 \\
0
\end{array}\right)
\end{array} \underbrace{}_{v_{2}}\left(\begin{array}{c}
\left(\begin{array}{c}
3 \\
0 \\
0 \\
1 \\
-1
\end{array}\right) \\
v_{3}
\end{array}\right.
$$

where v_{1}, v_{2}, v_{3} are basis vectors to the null space for which $A v=0$.

Change of basis: Let us continue with the example of change of basis from session 26 .

First basis to vector space of polynomials of degree ≤ 2 was $E=\left\{1, z, z^{2}\right\}$

$$
\begin{array}{lll}
e_{1}^{4} & c_{2}^{4} & e_{3}^{\prime}
\end{array}
$$

To transform coordinates $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ of polynomial $p(z)$ w.r.t. e_{1}, e_{2}, e_{3} to coordinates y c.r.t. b_{1}, b_{2}, b_{3} we had to solve:

$$
\begin{aligned}
& S_{y}=x, \quad S=\left(\begin{array}{ccc}
-1 & 1 & -1 \\
2 & 2 & 0 \\
0 & 1 & 1
\end{array}\right) \\
& \Rightarrow y=S^{-1} x \\
& \text { coordinate } \\
& \text { vector for } b_{1} \\
& \text { writ. basis E }
\end{aligned}
$$

We got

$$
S^{-1}=\left(\begin{array}{ccc}
-\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\
\frac{1}{3} & \frac{1}{6} & \frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{6} & \frac{2}{3}
\end{array}\right) \quad \text { by Gaussian elimination }
$$

Now, let $p(z)=2 z^{2}-z+4$ with coordinates w.r.t. $e_{11} e_{21} e_{3}$

$$
x=\left(\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right) \quad, \quad \frac{d p}{d z}=p^{\prime}(z)=4 z-1
$$

Then we get the coordinates co.r.t. basis b_{1}, b_{2}, b_{3} :

$$
y=S^{-1} x=\left(\begin{array}{ccc}
-\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\
\frac{1}{3} & \frac{1}{6} & \frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{6} & \frac{2}{3}
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right)=\left(\begin{array}{c}
-\frac{7}{3} \\
\frac{11}{6} \\
\frac{1}{6}
\end{array}\right)
$$

So: $p(z)=-\frac{7}{3}(2 z-1)+\frac{11}{6}\left(2 z+1+z^{2}\right)+\frac{1}{6}\left(z^{2}-1\right)$

$$
=-z+4+2 z^{2}
$$

Recall: Differentiation is represented w.r.t. $e_{1}, e_{2}, e_{3} b y$

$$
\begin{aligned}
\nabla & =\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)^{1} \quad(\text { Session 22, part 2) } \\
& 1
\end{aligned} 1
$$

Q:- What matrix represents differentiation w.r.t.

$$
b_{1}, b_{2}, b_{3} \text { ? }
$$

Since

$$
y^{\prime}=S^{-1} x^{\prime}=S^{-1} \underbrace{D x}_{=x^{\prime}}=S^{-1} D \underbrace{S_{=}^{-1}}_{=I} x=S^{-1} D S y
$$

$$
\begin{aligned}
S^{-1} D S & =\underbrace{\left(\begin{array}{ccc}
\frac{2}{3} & \frac{2}{3} \\
0 & \frac{1}{3} & \frac{1}{3} \\
0 & -\frac{1}{3} & -\frac{1}{3}
\end{array}\right)\left(\begin{array}{ccc}
-1 & 1 & -1 \\
2 & 2 & 0 \\
0 & 1 & 1
\end{array}\right)}_{\left(\begin{array}{ccc}
0 / 3 & \frac{1}{3} & -\frac{1}{3} \\
\frac{1}{3} & \frac{1}{6} & \frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{6} & \frac{2}{3}
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)} \begin{array}{ccc}
-1 & 1 & -1 \\
2 & 2 & 0 \\
0 & 1 & 1
\end{array})=\left(\begin{array}{ccc}
-\frac{2}{3} & 0 & \frac{2}{3} \\
\frac{2}{3} & 1 & \frac{1}{3} \\
-\frac{2}{3} & -1 & -\frac{1}{3}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-\frac{2}{3} & 0 & \frac{2}{3} \\
\frac{2}{3} & 1 & \frac{1}{3} \\
-\frac{2}{3} & -1 & -\frac{1}{3}
\end{array}\right)\left(\begin{array}{c}
-\frac{7}{3} \\
\frac{11}{6} \\
\frac{1}{6}
\end{array}\right)=\left(\begin{array}{c}
\frac{14}{9}+\frac{1}{9} \\
-\frac{14}{9}+\frac{11}{6}+\frac{1}{18} \\
\frac{14}{9}-\frac{11}{6}-\frac{1}{28}
\end{array}\right)=\left(\begin{array}{c}
5 / 3 \\
\frac{1}{3} \\
-\frac{1}{3}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow p^{\prime}(z)=5 / 3(2 z-1)+\frac{1}{3}\left(2 z+1+z^{2}\right)+(-1 / 3)\left(z^{2}-1\right) \\
&\text { (w.r.t. } \left.b_{1}, b_{2}, b_{3}\right) \\
&=4 z-1
\end{aligned}
$$

We can sketch this in an abstract way:

So, $\quad T=S D S^{-1}$
S changes from basis C to E and S^{-1} from E to C
D and T are operators (e.g. differentiation) on V writ. to the same basis, E and C, respectively.
Important topics for next semester as continuation of Linear Algebra:

Further properties of matrices:

Determinant of a matrix A, $\operatorname{det}(A)$ and
Eigenvalues and eigenvectors, ie.

