Calculus and Elements of Linear Algebra I
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver)
Jacobs University, fall 2022
Live lectures sessions $9 \& 10$
2. Derivatives
2.1 Introduction to derivatives and their properties

Examples:
(1) $\quad f(x)=\frac{3 x^{2}+1}{x^{5}+x}$

Two options: Product or quotient rule

$$
\begin{aligned}
& \text { a) } f(x)=\underbrace{\left(3 x^{2}+1\right)}_{=g(x)}(\underbrace{\left.x^{5}+x\right)^{-1}}_{h(x)} \\
& g^{\prime}(x)=6 x ; \quad h^{\prime}(x)=-\left(x^{5}+x\right)^{-2} \cdot\left(5 x^{4}+1\right) \\
& \quad \text { (chain rule) })
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow f^{\prime}(x) & =g^{\prime}(x) h(x)+g(x) h^{\prime}(x) \\
& =6 x\left(x^{5}+x\right)^{-1}+\left(3 x^{2}+1\right) \cdot-\left(x^{5}+x\right)^{-2}\left(5 x^{4}+1\right) \\
& =\frac{6 x \cdot\left(x^{5}+x\right)}{\left(x^{5}+x\right) \cdot\left(x^{5}+x\right)}-\frac{\left(3 x^{2}+1\right)\left(5 x^{4}+1\right)}{\left(x^{5}+x\right)^{2}} \\
& =\frac{6 x\left(x^{5}+x\right)-\left(3 x^{2}+1\right)\left(5 x^{4}+1\right)}{\left(x^{5}+x\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } f(x)=\underbrace{\text { or }}_{=h(x)} \begin{aligned}
& \frac{3 x^{2}+1}{\left(x^{5}+x\right)} \\
& g^{\prime}(x)=6 x(x) \\
& f^{\prime}(x)={\frac{g}{} g^{\prime}(x) h(x)-g(x) h^{\prime}(x)}_{(h(x))^{2}}^{h^{\prime}(x)=5 x^{4}+x} \\
&=\frac{6 x\left(x^{5}+x\right)-\left(3 x^{2}+1\right)\left(5 x^{4}+x\right)}{\left(x^{5}+x\right)^{2}}
\end{aligned}
\end{aligned}
$$

(you can potentially simplify)
(further $O \quad v$ V)
(2) $f(x)=\sin (\cos (x))$

Use chain rule:

$$
f^{\prime}(x)=\underset{\text { outer }}{\cos (\cos (x)) \cdot} \cdot(-\sin (x))
$$

(3) $f(x)=\sin \left(\cos \left(x^{2}+e^{x}\right)\right)$

Use chain rule twice:

$$
\begin{aligned}
& f^{\prime}(x)=\underbrace{\cos \left(\cos \left(x^{2}+e^{x}\right)\right.}_{\text {st outer }}) \cdot(\underbrace{\left(\cos \left(x^{2}+e^{x}\right)\right)^{\prime}}_{\text {lIst inner }} \\
& f^{\prime}(x)=\underbrace{\cos \left(\cos ^{2}\left(x^{2}+e^{x}\right)\right.}_{\text {Mst outer }} \cdot \underbrace{-\sin \left(x^{2}+e^{x}\right)}_{\text {Ind outer }} \cdot \underbrace{\left(2 x+e^{x}\right)}_{\text {Ind inner }}
\end{aligned}
$$

(4) $f(x)=\underbrace{e^{\cos (x)}}_{=g(x)} \cdot \underbrace{\sin \left(x^{2} \cdot \ln (x)\right)}_{=h(x)}$

Use product and chain rule:

$$
\begin{aligned}
& g^{\prime}(x)=\underbrace{e^{\cos (x)}}_{\text {outer }} \underbrace{(-\sin (x))}_{\text {inner }} \\
& h^{\prime}(x)=\underbrace{\cos \left(x^{2} \cdot \ln (x)\right)}_{\text {outer }}\left(2 x \cdot \ln (x)+x^{2} \frac{1}{x}\right) \\
&=\cos \left(x^{2} \cdot \ln (x)\right)(x(2 \ln (x)+1)) \\
& \Rightarrow f^{\prime}(x)=g^{\prime}(x) h(x)+g(x) h^{\prime}(x) \\
&=e^{\cos (x) \cdot-\sin (x) \cdot \sin \left(x^{2} \cdot \ln (x)+e^{\cos (x)}\right.} \\
& \cos \left(x^{2} \cdot \ln (x)\right) \cdot x(2 \ln (x)+1)
\end{aligned}
$$

Some missing proofs:
Chain rule: $(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
Proof:

$$
(f(g(x)))^{\prime}=\lim _{h \rightarrow 0}(\frac{f(g(x+h))-f(g(x))}{g(x+h)-g(x)} \cdot \underbrace{\frac{g(x+h)-g(x)}{h}}_{=1})
$$

$$
\operatorname{sif}_{\frac{f(g(x)+k)-f(g(x))}{k}}^{k}=\emptyset(k) \quad \text { with } k:=g(x+h)-g(x)
$$

If k is an arbitrary, non-zero number, then

$$
\lim _{k \rightarrow 0} \phi(k)=f^{\prime}(g(x))
$$

Moreover, by continuity of $g(x)$:

$$
\lim _{h \rightarrow 0} k(h)=\lim _{h \rightarrow 0}(g(x+h)-g(x))=0
$$

So $h \rightarrow 0$ implies $k(h) \rightarrow 0$
This proof is almost complete, but we have to be careful in case $k(h)$ becomes 0 .

Solution: Extend $\phi(k)$ continuously by $f^{\prime}(g(x))$ for $k=0$.

Extension of power rule $\left(x^{n}\right)^{\prime}=n x^{n-1}, n \in \mathbb{N}$ to rational exponents:

$$
\begin{aligned}
\left(x^{\frac{p}{q}}\right)^{\prime} & =\left((u(x))^{p}\right)^{\prime}, u(x)=x^{\frac{1}{q}} \\
& =\underbrace{p}_{\text {outer } u_{\text {inner }}^{p u^{p-1}} \cdot u^{\prime}} \text { (chain rule) }
\end{aligned}
$$

Also: $u(x)=x^{\frac{1}{q}} \Rightarrow(u(x))^{q}=x$

$$
\Rightarrow \underbrace{q u(x)^{q-1} \cdot u^{\prime}}_{\text {Chain rule }}=\underbrace{1}_{x^{\prime}=1} \quad\binom{\text { differentiate on }}{\text { both sides }}
$$

$$
\begin{aligned}
& \text { Now: } \frac{\left(x^{P / q}\right)^{\prime}}{1}=\frac{p u^{p-1} \cdot \mu^{\prime}}{q u^{q-1} \cdot u^{\prime}} \\
& \Rightarrow\left(x^{\frac{p}{q}}\right)^{\prime}=\frac{p}{q} u^{p-1-(q-1)}=\frac{\rho}{q} u^{p-q}=\frac{p}{q} \times \frac{\frac{p-q}{q}}{u=x^{\frac{1}{q}}} \\
& =\frac{p}{q} x^{\frac{p_{q}}{q}-1} \\
& r=\frac{p}{q} \\
& \left.\begin{array}{l}
r=q \\
\Rightarrow \\
\Rightarrow
\end{array} x^{r}\right)^{\prime}=r x^{r-1} \quad, r \in \mathbb{Q}
\end{aligned}
$$

This relation can be extended to arbitrary $r \in \mathbb{R}$ "by continuity" (ie., r as a limit of rational numbers)

Example implicit differentiation:

We have $x(t)$ as the distance traveled as a function of time t.
We then get: $\bar{u}=\frac{x\left(t_{2}\right)-x\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{\begin{array}{l}\text { distance traveled } \\ \text { between } t_{1} \text { and } t_{2}\end{array}}{\text { travel time }}$ mean - velocity u

$$
U(t)=\lim _{t_{2} \rightarrow t} \frac{x\left(t_{2}\right)-x(t)}{t_{2}-t}=\frac{d x}{d t} \quad \begin{aligned}
& \text { instantaneous } \\
& \text { velocity }
\end{aligned}
$$

Now:

Radar can track distance $l(t)$ and therefore approximate

$$
e^{\prime}(t)=\frac{d l}{d t}
$$

Q: What is the velocity (in the vertical) $\frac{d h}{d t}$ of the rocket?

$$
l^{2}=a^{2}+h^{2} \Rightarrow 2 l \frac{d l}{d t}=0+2 h \frac{d h}{d t}
$$

diff. w.r.t. t
$\Rightarrow \frac{d h}{d t}=\frac{l}{h} \frac{d l}{d t}=\frac{l}{\sqrt{l^{2}-a^{2}}} \frac{d l}{d t}, \quad l, \frac{d l}{d t}, a$ are measurable quantities

Eg:: $\quad a=3 \mathrm{~km}, \quad l=5 \mathrm{~km}, \frac{d l}{d t}=1000 \frac{\mathrm{~m}}{\mathrm{~s}}$

Application of second derivative
Osculating circle: touches graph of f at point (x, y)

- it has the same first and second derivative as f at (x, y)

"osculating circle provides second order local approximation to graph of f, while tangent line is only first-order approximation."

Q: What is radius r of osculating circle?
(1) $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$ (general circle equation with centre $\left(x_{0}, y_{0}\right)$ and radius r)
(1) ifferentiate in x :
(2) $2\left(x-x_{0}\right) \cdot 1+2\left(y-y_{0}\right) \frac{d y}{d x}=0$

$$
\Rightarrow x-x_{0}+\left(y-y_{0}\right) \frac{d y}{d x}
$$

Second derivative in x (diff. (2)):
(3) $1+\underbrace{\frac{d y}{d x} \frac{d y}{d x}+\left(y-y_{0}\right) \frac{d^{2} y}{d x^{2}}}_{\text {product rule }}=0$

Osculating circle conditions:

$$
\begin{aligned}
\text { - } y & =f(x) \\
\cdot \frac{d y}{d x} & =f^{\prime}(x) \\
\cdot \frac{d^{2} y}{d x^{2}} & =f^{\prime \prime}(x) \\
\text { circle } & \text { graph }
\end{aligned}
$$

From (3): $\left(y-y_{0}\right) f^{\prime \prime}(x)=-1-f^{\prime}(x)^{2}$

$$
\Rightarrow\left(y-y_{0}\right)=-\frac{1+f^{\prime}(x)^{2}}{f^{\prime \prime}(x)}
$$

From (2): $\quad x-x_{0}=-\left(y-y_{0}\right) f^{\prime}(x)$
use (3)

$$
\stackrel{e(3)}{=}-f^{\prime}(x)\left(-\frac{1+f^{\prime}(x)^{2}}{f^{\prime \prime}(x)}\right)=f^{\prime}(x) \frac{1+f^{\prime}(x)^{2}}{f^{\prime \prime}(x)}
$$

From (1): $r^{2}=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}$
$\left.\begin{array}{c}\text { (2) } \&(3) \\ = \\ =\end{array} f^{\prime}(x)\right)^{2}\left(\frac{1+f^{\prime}(x)^{2}}{f^{\prime \prime}(x)}\right)^{2}+\left(\frac{1+f^{\prime}(x)^{2}}{f^{\prime \prime}(x)}\right)^{2}$

$$
=\left(1+f^{\prime}(x)^{2}\right)\left(\frac{1+f^{\prime}(x)^{2}}{f^{\prime \prime}(x)}\right)^{2}
$$

$$
=\frac{\left(1+f^{\prime}(x)^{2}\right)^{3}}{f^{\prime \prime}(x)^{2}}
$$

Now define curvature

$$
k=\frac{1}{r}=\underbrace{\frac{f^{\prime \prime}(x)}{\left(1+f^{\prime}(x)^{2}\right)^{\frac{3}{2}}}}_{>0}
$$

Link to concavity

$f^{\prime \prime}(x)>0$
$K>0$
(circle above)

$$
f^{\prime \prime}(x)<0
$$

$k<0$
(circle below)

