Calculus and Elements of Linear Algebra I
Prof. Sören Petrat, Dr. Stephan Juricke (based on lecture notes by Marcel Oliver) Jacobs University, Fall 2022

Live lectures sessions $11 \& 12$
2. Derivatives
2.1 Introduction to derivatives and their properties and
2.2 Applications of differentiation

Important consequence of MVT
$f:(a, b) \rightarrow \mathbb{R}$ diff'able with $f^{\prime}(x) \geqslant 0(\leqslant 0)$
$\Rightarrow f$ is increasing (decreasing) on (a, b)
Proof: Suppose the contrary, i.e. there are

$$
x_{1}<x_{2} \text { with } f\left(x_{1}\right)>f\left(x_{2}\right), x_{1}, x_{2} \in(a, b)
$$

Then:
$\left.\begin{array}{r}\text { MUT: } \\ (\underbrace{\frac{f\left(x_{2}\right)-f\left(x_{1}\right)^{\prime}}{\left(x_{2}-x_{1}\right)}}_{<0})\end{array}\right)=\underbrace{f^{\prime}(c)}_{>0}$ with $c \in\left(x_{1}, x_{2}\right)$
Opposite must be true!
Example:

$$
\begin{aligned}
f(x) & =3 x^{4}-4 x^{3}-12 x^{2}+5 \\
f^{\prime}(x) & =12 x^{3}-12 x^{2}-24 x \\
& =12 x\left(x^{2}-x-2\right) \\
& =12 x(x+1)(x-2)
\end{aligned}
$$

$\Rightarrow \quad f^{\prime}(x)<0$, so f decreasing on $(-\infty,-1)$
$f^{\prime}(x)>0$, so f increasing on $(-1,0)$
$f^{\prime}(x)<0$, so f decreasing on $(0,2)$
$f^{\prime}(x)>0$, so f increasing on $(2, \infty)$
\Rightarrow local min at $f(-1)=0$ and $f(2)=-27$
local max at $f(0)=5$

Can use this to sketch

(2)

$$
\begin{aligned}
f(x) & =\frac{x^{2}-1}{\sqrt{x^{2}+1}} \\
f^{\prime}(x) & =\frac{2 x\left(\sqrt{x^{2}+1}\right)-\left(x^{2}-1\right) / 1 /\left(x^{2}+1\right)^{-\frac{1}{2}} \cdot 2 x}{x^{2}+1} \cdot\left(\sqrt{x^{2}+1}\right) \\
& =\frac{2 x\left(x^{2}+1\right)-\left(x^{2}-1\right) x}{\left(x^{2}+1\right)^{\frac{3}{2}}} \\
& =\frac{2 x^{3}+2 x-x^{3}+x}{\left(x^{2}+1\right)^{3 / 2}}=\frac{x\left(3+x^{2}\right)}{\left.\left(x^{2}+1\right)^{3 / 2}\right)}>0
\end{aligned}
$$

$\Rightarrow f^{\prime}(x)<0$ if and only if $x<0 \Rightarrow f$ decreasing
$f^{\prime}(x)>0$ if and only if $x<0 \Rightarrow f$ increasing
$\Rightarrow f$ has a global minimum at $x=0$

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{\left(1 \cdot\left(3+x^{2}\right)+x \cdot 2 x\right)\left(x^{2}+1\right)^{\frac{3 / 2}{2}}-x \cdot\left(3+x^{2}\right) 2 x \cdot \frac{3}{2}\left(x^{2}+1\right)^{\frac{1}{2}}}{\left(x^{2}+1\right)^{3 / 2} / 2} \\
&=\frac{3 x^{2}+3+3 x^{4}+3 x^{2}-9 x^{2}-3 x^{4}}{\left(x^{2}+1\right)^{5 / 2}} \\
&=\frac{3-3 x^{2}}{\left(x^{2}+1\right)^{5 / 2}} \\
&>0
\end{aligned}
$$

Critical point at $x=0$: $f^{\prime \prime}(0)>0$
$\Rightarrow f$ has a local min at $x=0$
$\binom{$ local because of the second }{ derivative argument }
but we know from previous argument that it is actually global.

There is more information from $f^{\prime \prime}$:

$$
f^{4}(x)=3 \frac{1-x^{2}}{\left(x^{2}+1\right)^{\frac{5}{2}}}=3 \frac{(1-x)(1+x)}{\frac{\left.\left(x^{2}+1\right)^{5 / 2}\right)}{>0}} \Rightarrow \text { roots } 1,-1
$$

So at $x=-1, f^{\prime \prime}$ is changing sign from - to +
$x=+1, f^{\prime \prime}$ is changing sign from + to -
\Rightarrow points of inflection at $x=-1, f(-1)=0$ and

$$
x=1, f(1)=0
$$

Extreme value problem
Application of Snell's law:
Sketch:

c_{1} : speed of light in medium 1
c_{2} : speed of light in medium 2
Fermat's principle: Light travels path of
fastest propagation fastest propagation
i.e.: $T=\frac{l_{1}}{c_{1}}+\frac{l_{2}}{c_{2}}$ travel time takes minimum for the chosen path
(T : total travel time light needs from source to observer)

We have: $\quad h_{1}^{2}+x^{2}=l_{1}^{2}$ and $h^{2}+(a-x)^{2}=l_{2}^{2}$
Take derivative: $\quad 2 x=2 l_{1} \frac{d l_{1}}{d x} \Rightarrow \frac{d l_{1}}{d x}=\frac{x}{l_{1}}=\sin \theta_{1}$

$$
\begin{aligned}
& -2(a-x)=2 e_{2} \frac{d l_{2}}{d x} \Rightarrow \frac{d l_{2}}{d x}=\frac{x-a}{e_{2}}=-\sin \theta_{2} \\
& \text { (as } l_{1} \text { and } l_{2} \text { depend on } x \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 0 \stackrel{!}{=} \frac{d T}{d x}=\frac{1}{c_{1}} \frac{d l_{1}}{d x}+\frac{1}{c_{2}} \frac{d l_{2}}{d x} \Rightarrow 0=\frac{\sin \theta_{1}}{c_{1}}-\frac{\sin \theta_{2}}{c_{2}} \\
& \Rightarrow \frac{c_{1}}{c_{2}}=\frac{\sin \theta_{1}}{\sin \theta_{2}} \quad \text { Snell's law }
\end{aligned}
$$

