Jacobs University Bremen Fall 2022

Name: _

Matriculation ID: _____

INSTRUCTIONS

- Make sure to write your name and ID on the first page and every page thereafter.
- The question booklet consists of 14 pages. Make sure you have all of them.
- Keep quiet during the exam. For assistance, raise your hand and a proctor will come to see you.
- Answer the questions in the spaces provided after each question. If you run out of room for an answer, continue on the back of the page.
- The mark of each question is printed next to it.
- Use of mobile phones or other unauthorized electronic devices or material in the exam room is prohibited. No mathematical calculators are allowed during the exam.
- Make sure you read and sign the **Declaration Of Academic Integrity** shown below.

Declaration of Academic Integrity

By signing below, I pledge that the answers of this exam are my own work without the assistance of others or the usage of unauthorized material or information.

Signature:

Good luck! Dr. Stephan Juricke, Prof. Dr. Sören Petrat

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
Points	6	6	6	6	4	4	4	6	4	4	4	-6	25	25	110
Score															

- 1. (6 points) Let p(x) be a polynomial of degree n with real coefficients, i.e., $p(x) = \sum_{k=0}^{n} c_k x^k$, with $c_k \in \mathbb{R}$ for all k = 0, ..., n, and $c_n \neq 0$. Which of the following is true?
 - A. All roots are real numbers.
 - B The roots can be real or complex numbers.
 - C. If z is a root, then its complex conjugate z^* is also a root.
 - D. If n is even, then p(x) must have one real root.
 - E. p(x) factorizes as $p(x) = a_n(x z_1)(x z_2) \cdots (x z_n)$ with all z_k real.
 - (F) p(x) factorizes as $p(x) = a_n(x-z_1)(x-z_2)\cdots(x-z_n)$ and $a_n(-z_1)(-z_2)\cdots(-z_n) = c_0$.
- 2. (6 points) Consider the polynomial

$$p(x) = x^2 - 2\lambda x + 1,$$

with some parameter $\lambda \in \mathbb{R}$. Which of the following is true?

- A. For any $-1 \le \lambda \le 1$ the roots are real numbers.
- B) For any $\lambda \leq -1$ and $\lambda \geq 1$ the roots are real numbers.
 - C. For any $-2 \leq \lambda \leq 2$ the roots are real numbers.

D. For $\lambda > 0$ the roots are positive, and for $\lambda < 0$ the roots are negative.

(E) For $\lambda = \frac{1}{13}$, we have p(x) > 0 for all $x \in \mathbb{R}$.

- F. For $\lambda = \frac{1}{13}$, we have p(x) < 0 for all $x \in \mathbb{R}$.
- 3. (6 points) Consider the function

$$f(x) = x \sin\left(rac{1}{x}
ight)$$
 for $x
eq 0$,

and f(0) := 0. Which of the following is true?

- (A) f is continuous at 0.
- B. f is not continuous at 0.

$$(C)|f(x)| \le |x|.$$

- $D \lim_{x \to 0} f(x) = 0.$
- E. $\lim_{x\to 0} f(x) = 1$.
- F. $\lim_{x \to 0} f(x) = -1$.

- 4. (6 points) What are necessary or sufficient conditions for f : [a, b] → R to have a minimum at c ∈ (a, b)?
 A. f'(x) = 0 for all x ∈ (a, b).
 B) f'(c) = 0.
 - C. f(c) = 0.
 - (D) f''(c) > 0.E. f''(c) < 0.
 - F. $f''(c) \ge 0$.
- 5. (4 points) We want to build a fence around a rectangular field. 500 metres of fencing material are available and the field is on one side bounded by a building so that this side won't need any fencing. What is the largest area A that can be fenced in?
 - A. None of the given options.
 - B. $A = 500m^2$
 - C. $A = 50000m^2$
 - $\textcircled{D} A = 31250m^2$
 - E. $A = 12500m^2$
 - F. $A = 25000m^2$
- 6. (4 points) What is the derivative of $f(x) = \sin(e^{2cx^2})$ with respect to x, where $c \in \mathbb{R}$ is some constant?

A. $f'(x) = e^{2cx^2} \cos(e^{2cx^2})$ B. $f'(x) = 2cxe^{2cx^2} \sin(e^{2cx^2})$ $\bigcirc f'(x) = 4cxe^{2cx^2} \cos(e^{2cx^2})$ D. $f'(x) = \cos(4cx^2e^{2cx^2})$ E. $f'(x) = cxe^{2cx^2} \cos(e^{2cx^2})$ F. $f'(x) = xe^{2x^2} \cos(e^{2cx^2})$

7. (4 points) Compute the integral

$$\int_0^1 x e^x \, \mathrm{d}x.$$

- A. e. B. 2e. C. e - 1. D. e^{x} . E. 2.
- F 1.
- 8. (6 points) Consider the improper integral

$$\int_1^\infty \frac{1}{x^\alpha} \,\mathrm{d} x$$

for different parameters $\alpha \in \mathbb{R}$.

A.) For $\alpha = 1$ the improper integral is infinite.

B. For $\alpha = 1$ the improper integral is finite and its value is 1.

C. For $\alpha = 1$ the improper integral is finite and its value is $\ln(1 + \alpha)$.

D. For $\alpha > 1$ the improper integral is infinite.

E For $\alpha > 1$ the improper integral is finite and its value is $\frac{1}{\alpha - 1}$.

F. For $\alpha > 1$ the improper integral is finite and its value is $\ln \alpha$.

9. (4 points) What is the solution to the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -3yt$$

with initial condition y(0) = 1?

A.
$$y(t) = e^{t}$$
.
B. $y(t) = e^{-t}$.
C. $y(t) = e^{-\frac{3}{2}t^{2}}$.
D. $y(t) = e^{-t^{2}}$.
E. $y(t) = e^{-3t}t + 1$.
F. $y(t) = e^{-3t}t$.

ſ

- 10. (4 points) What is the scalar product between $u = (2, -3, 1)^T$ and $v = (1, 4, 5)^T$? A. $u \cdot v = 5$
 - B. $u \cdot v = -3$ C. $u \cdot v = -5$ D. $u \cdot v = 2$ E. $u \cdot v = -6$ F. $u \cdot v = -10$

11. (4 points) Calculate $A^T \cdot B \cdot C$ with

$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 3 & -3 \\ 1 & 2 \end{bmatrix}$$

A.
$$\begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix}$$
$$B \begin{bmatrix} 4 & -10 \\ -4 & 10 \end{bmatrix}$$

C.
$$\begin{bmatrix} 4 & 10 \\ 4 & 10 \end{bmatrix}$$
$$D. \begin{bmatrix} 2 & 4 \\ 4 & -2 \end{bmatrix}$$

E.
$$\begin{bmatrix} 10 & -10 \\ 4 & -4 \end{bmatrix}$$
$$F. \begin{bmatrix} 2 & -2 \\ 4 & -4 \end{bmatrix}$$

12. (6 points) Which of the following is true?

- (A) $\{b_1, ..., b_n\}$ with integer n is a basis \implies all b_i , i = 1, ..., n are linearly independent.
 - B. $u \cdot v = 0 \implies u$ is parallel to v.
 - C. u is perpendicular to $v\implies u\cdot v$ does not exist.
 - D. $u \times v = 0 \implies u$ and v are linearly independent.
 - E. u, v are linearly dependent $\implies au + vb = 0$ only if a, b = 0.
- (F) u, v are linearly independent $\implies au + vb = 0$ only if a, b = 0.

13. (25 points)

We consider the function

$$f(x) = \frac{e^x}{x-1}$$

- 2 (a) What is the domain of the function?
 - (b) What are the intercepts with the x-axis and with the y-axis?
 - (c) What are the horizontal asymptotes?
- 2 (d) What are the vertical asymptotes?
 - (e) Compute and analyze the first derivative. In which intervals is the function increasing or decreasing, what are the local minima or maxima?
 - (f) Compute and analyze the second derivative. In which intervals is the function concave up or concave down, what are the points of inflection?
 - (g) Sketch the function. Your drawing needs to include all the qualitative features of the graph discussed in the questions above.

3

2

6

5

5

a) The domain is
$$\mathbb{R} \setminus \{1\} = \{x \in \mathbb{R} : x \neq 1\}$$
.
b) \times -axis: $f(x) = \frac{e^x}{x-1} \stackrel{!}{=} 0 = > e^x \stackrel{!}{=} 0 = > uo \text{ solution}$
 $= > uo \text{ intercept with } x-axis.$
 $y-axis: f(0) = \frac{e^v}{-1} = -1$ is the y-axis intercept.
c) Since $\lim_{x \to -\infty} f(x) = 0$, the line $y=0$ is a
horizontal asymptote.
d) Since $\lim_{x \to -\infty} f(x) = \infty$ (and $\lim_{x \to 1} f(x) = -\infty$), the vertical line
 $\stackrel{x \to 1}{x > 0} \stackrel{x \to 1}{x < 0}$
 $\xrightarrow{x = 1} is a vertical asymptote.$
Exam, Page 8 of 14

Name:

ø

6

e) According to the grotient rule:

$$f'(x) = \frac{e^{x}(x-1) - e^{x} \cdot 1}{(x-1)^{2}} = \frac{e^{x}(x-2)}{(x-1)^{2}}$$

$$f'(x) = 0 \iff x = 2$$

$$f'(x) < 0 \quad \text{for } x < 2 \implies \text{love } f \text{ is decreasing}$$

$$f'(x) > 0 \quad \text{for } x > 2 \implies \text{leve } f \text{ is increasing}$$

$$= > \alpha + x = 2 \quad \text{there is a local minimum}$$

$$f'(x) = \frac{(e^{x}(x-2) + e^{x})(x-1)^{2} - e^{x}(x-2)2(x-1)}{(x-1)^{4}}$$

$$= \frac{e^{x}}{(x-1)^{4}} \left((x-7+1)(x-1) - 2(x-21) \right)$$

$$= e^{x} \frac{(x^{2}-(x+5))}{(x-1)^{3}}$$

$$Note: \text{ the zeros of } x^{2}-(x+5) \text{ are } x_{\pm} = 2 \pm \sqrt{-1}^{4} = 2 \pm i$$

$$= > \text{ there are no inflection points. Also:}$$

$$\text{for } x < 1 \text{ we have } f''(x) > 0, \text{ so here } f \text{ is concave down.}$$

$$\text{for } x > 1 \text{ we have } f''(x) > 0, \text{ so here } f \text{ is concave } \text{ up.}$$

14. (25 points)

- $\label{eq:alpha} \begin{array}{|c|c|c|c|c|} \hline \hline & (a) \mbox{ For a matrix } A \in M(n \times n), \mbox{ give one equivalent statement to "The inverse of A, i.e., a matrix A^{-1} such that $A^{-1}A = 1$, exists".} \end{array}$
- 10 (b) Find the inverse of $A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 2 & 0 & -1 \end{pmatrix}$ using row operations as in the lecture.
- 4 (c) Solve the equation Ax = b with $b = (1, 2, 1)^T$.
- (d) What are the values for the Rank and Nullity of A? Briefly explain your answer.
- 4 (e) Now consider the matrix $B = \begin{pmatrix} 1 & 2 & 4 \\ 1 & 1 & 2 \\ 2 & 0 & 0 \end{pmatrix}$, i.e., we have changed the last column in A.

What are the values for the Rank and Nullity of B? Briefly explain your answer.

$$\begin{pmatrix} \Lambda & 2 & 0 & | \Lambda & 0 & 0 \\ | \Lambda & \Lambda & \Lambda & 0 & | \Lambda & 0 & 0 \\ | 2 & 0 & -\Lambda & 0 & 0 & \Lambda \end{pmatrix} \xrightarrow{R2 \in R2 - R\Lambda} \begin{pmatrix} \Lambda & 2 & 0 & | \Lambda & 0 & 0 \\ | 0 & -1 & | -1 & \Lambda & 0 \\ | 0 & -4 & -1 & | -2 & 0 & \Lambda \end{pmatrix}$$

Name:

Name:
Name:

$$A^{-4} = \begin{pmatrix} -4 & 2 & 2 \\ 3 & -4 & -4 \\ -2 & 4 & -4 \end{pmatrix}$$

$$W_{1} \quad can \ check \qquad A^{-4} \cdot A :$$

$$A^{-4} = \begin{pmatrix} -4 & 2 & 2 \\ 3 & -4 & -4 \\ -2 & 4 & -4 \end{pmatrix} \begin{pmatrix} 4 & 2 & 0 \\ -4 & 4 & 4 \\ -2 & 4 & -4 \end{pmatrix} \begin{pmatrix} 4 & 2 & 0 \\ -4 & 4 & 4 \\ 2 & 0 & -4 \end{pmatrix} = \frac{4}{5} \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vee$$

$$C) \quad A \times = b \quad \Rightarrow \quad \chi = A^{-4} b$$

$$\Rightarrow \quad A = \begin{pmatrix} -4 & 2 & 2 \\ -2 & 4 & -4 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix} = \frac{4}{5} \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix} = \chi (be \ can \ check \\ A \times = \begin{pmatrix} 4 \\ -2 \end{pmatrix} \end{pmatrix}$$

$$d) \quad Ranke \ of \ A \ is \ 3 \ and \ Nulleity \ is \ 0. \ As \ the \ matrix \ is \ invertible, \ i.e. \ A^{-4} \ exists, \ ranke(A) \ has \ to \ be \ full, \ i.e. \ 3. \ Ranke - Nullity - Theorem \ tells \ us, \ that \ the \ mullity \ lass \ to \ be \ 0 \ as \ rank (A) + nullity(A)=3$$

Exam, Page 9 of 14

Name:	Calculus and Linear Algebra I, Fall 2022									
(19e) We	Can see	that the	last	4200	columns					
of B	are now	tinearly	depend	lent	That means					
they	contain "t	he same	inform	ration	" and therefore					
the r	ank (B) = 2	rather	- than	3	Rank - Nullity-					
Theore	n tells us	that	rank((8) -	mellity (B) = 3					
=) mill	h(B) = 1									