\qquad
\qquad

INSTRUCTIONS

- Make sure to write your name and ID on the first page and every page thereafter.
- The question booklet consists of 14 pages. Make sure you have all of them.
- Keep quiet during the exam. For assistance, raise your hand and a proctor will come to see you.
- Answer the questions in the spaces provided after each question. If you run out of room for an answer, continue on the back of the page.
- The mark of each question is printed next to it.
- Use of mobile phones or other unauthorized electronic devices or material in the exam room is prohibited. No mathematical calculators are allowed during the exam.
- Make sure you read and sign the Declaration Of Academic Integrity shown below.

Declaration of Academic Integrity

By signing below, I pledge that the answers of this exam are my own work without the assistance of others or the usage of unauthorized material or information.

Signature:

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
Points	6	6	6	6	4	4	4	6	4	4	4	6	25	25	110
Score															

1. (6 points) Let $p(x)$ be a polynomial of degree n with real coefficients, i.e., $p(x)=$ $\sum_{k=0}^{n} c_{k} x^{k}$, with $c_{k} \in \mathbb{R}$ for all $k=0, \ldots, n$, and $c_{n} \neq 0$. Which of the following is true?
A. All roots are real numbers.

B The roots can be real or complex numbers.
(C. If z is a root, then its complex conjugate z^{*} is also a root.
D. If n is even, then $p(x)$ must have one real root.
E. $p(x)$ factorizes as $p(x)=a_{n}\left(x-z_{1}\right)\left(x-z_{2}\right) \cdots\left(x-z_{n}\right)$ with all z_{k} real.
(F) $p(x)$ factorizes as $p(x)=a_{n}\left(x-z_{1}\right)\left(x-z_{2}\right) \cdots\left(x-z_{n}\right)$ and $a_{n}\left(-z_{1}\right)\left(-z_{2}\right) \cdots\left(-z_{n}\right)=c_{0}$.
2. (6 points) Consider the polynomial

$$
p(x)=x^{2}-2 \lambda x+1
$$

with some parameter $\lambda \in \mathbb{R}$. Which of the following is true?
A. For any $-1 \leq \lambda \leq 1$ the roots are real numbers.
B. For any $\lambda \leq-1$ and $\lambda \geq 1$ the roots are real numbers.
C. For any $-2 \leq \lambda \leq 2$ the roots are real numbers.
D. For $\lambda>0$ the roots are positive, and for $\lambda<0$ the roots are negative.
E. For $\lambda=\frac{1}{13}$, we have $p(x)>0$ for all $x \in \mathbb{R}$.
F. For $\lambda=\frac{1}{13}$, we have $p(x)<0$ for all $x \in \mathbb{R}$.
3. (6 points) Consider the function

$$
f(x)=x \sin \left(\frac{1}{x}\right) \text { for } x \neq 0
$$

and $f(0):=0$. Which of the following is true?
A. f is continuous at 0 .
B. f is not continuous at 0 .
(C. $|f(x)| \leq|x|$.
(D) $\lim _{x \rightarrow 0} f(x)=0$.
E. $\lim _{x \rightarrow 0} f(x)=1$.
F. $\lim _{x \rightarrow 0} f(x)=-1$.
4. (6 points) What are necessary or sufficient conditions for $f:[a, b] \rightarrow \mathbb{R}$ to have a minimum at $c \in(a, b)$?
A. $f^{\prime}(x)=0$ for all $x \in(a, b)$.
(B. $f^{\prime}(c)=0$.
C. $f(c)=0$.
(D) $f^{\prime \prime}(c)>0$.
E. $f^{\prime \prime}(c)<0$.
F. $f^{\prime \prime}(c) \geq 0$.
5. (4 points) We want to build a fence around a rectangular field. 500 metres of fencing material are available and the field is on one side bounded by a building so that this side won't need any fencing. What is the largest area A that can be fenced in?
A. None of the given options.
B. $A=500 \mathrm{~m}^{2}$
C. $A=50000 \mathrm{~m}^{2}$
(D) $A=31250 m^{2}$
E. $A=12500 m^{2}$
F. $A=25000 m^{2}$
6. (4 points) What is the derivative of $f(x)=\sin \left(e^{2 c x^{2}}\right)$ with respect to x, where $c \in \mathbb{R}$ is some constant?
A. $f^{\prime}(x)=e^{2 c x^{2}} \cos \left(e^{2 c x^{2}}\right)$
B. $f^{\prime}(x)=2 c x e^{2 c x^{2}} \sin \left(e^{2 c x x^{2}}\right)$
C. $f^{\prime}(x)=4 c x e^{2 c x^{2}} \cos \left(e^{2 c x^{2}}\right)$
D. $f^{\prime}(x)=\cos \left(4 c x^{2} e^{2 c x^{2}}\right)$
E. $f^{\prime}(x)=c x e^{2 c x^{2}} \cos \left(e^{2 c x^{2}}\right)$
F. $f^{\prime}(x)=x e^{2 x^{2}} \cos \left(e^{2 c x^{2}}\right)$
7. (4 points) Compute the integral

$$
\int_{0}^{1} x e^{x} \mathrm{~d} x
$$

A. e
B. $2 e$.
C. $e-1$.
D. e^{x}.
E. 2 .
(F) 1 .
8. (6 points) Consider the improper integral

$$
\int_{1}^{\infty} \frac{1}{x^{\alpha}} \mathrm{d} x
$$

for different parameters $\alpha \in \mathbb{R}$.
A. For $\alpha=1$ the improper integral is infinite.
B. For $\alpha=1$ the improper integral is finite and its value is 1 .
C. For $\alpha=1$ the improper integral is finite and its value is $\ln (1+\alpha)$.
D. For $\alpha>1$ the improper integral is infinite.
(E.) For $\alpha>1$ the improper integral is finite and its value is $\frac{1}{\alpha-1}$.
F. For $\alpha>1$ the improper integral is finite and its value is $\ln \alpha$.
9. (4 points) What is the solution to the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=-3 y t
$$

with initial condition $y(0)=1$?
A. $y(t)=e^{t}$.
B. $y(t)=e^{-t}$.
C. $y(t)=e^{-\frac{3}{2} t^{2}}$.
D. $y(t)=e^{-t^{2}}$.
E. $y(t)=e^{-3 t} t+1$.
F. $y(t)=e^{-3 t} t$.
10. (4 points) What is the scalar product between $u=(2,-3,1)^{T}$ and $v=(1,4,5)^{T}$?
A. $u \cdot v=5$
B. $u \cdot v=-3$
(C) $u \cdot v=-5$
D. $u \cdot v=2$
E. $u \cdot v=-6$
F. $u \cdot v=-10$
11. (4 points) Calculate $A^{T} \cdot B \cdot C$ with

$$
A=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right], B=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right], C=\left[\begin{array}{cc}
3 & -3 \\
1 & 2
\end{array}\right]
$$

A. $\left[\begin{array}{cc}4 & -4 \\ -4 & 4\end{array}\right]$
(B) $\left[\begin{array}{cc}4 & -10 \\ -4 & 10\end{array}\right]$
C. $\left[\begin{array}{ll}4 & 10 \\ 4 & 10\end{array}\right]$
D. $\left[\begin{array}{cc}2 & 4 \\ 4 & -2\end{array}\right]$
E. $\left[\begin{array}{cc}10 & -10 \\ 4 & -4\end{array}\right]$
F. $\left[\begin{array}{ll}2 & -2 \\ 4 & -4\end{array}\right]$
12. (6 points) Which of the following is true?
A. $\left\{b_{1}, \ldots, b_{n}\right\}$ with integer n is a basis \Longrightarrow all $b_{i}, i=1, \ldots, n$ are linearly independent.
B. $u \cdot v=0 \Longrightarrow u$ is parallel to v .
C. u is perpendicular to $v \Longrightarrow u \cdot v$ does not exist.
D. $u \times v=0 \Longrightarrow u$ and v are linearly independent.
E. u, v are linearly dependent $\Longrightarrow a u+v b=0$ only if $a, b=0$.
(F.) u, v are linearly independent $\Longrightarrow a u+v b=0$ only if $a, b=0$.
13. (25 points)

We consider the function

$$
f(x)=\frac{e^{x}}{x-1}
$$

2 (a) What is the domain of the function?
(b) What are the intercepts with the x-axis and with the y-axis?

2 (c) What are the horizontal asymptotes?
(d) What are the vertical asymptotes?

6 (e) Compute and analyze the first derivative. In which intervals is the function increasing or decreasing, what are the local minima or maxima?
(f) Compute and analyze the second derivative. In which intervals is the function concave up or concave down, what are the points of inflection?

5 (g) Sketch the function. Your drawing needs to include all the qualitative features of the graph discussed in the questions above.

a) The domain is $\mathbb{R} \backslash\{1\}=\{x \in \mathbb{R}: x \neq 1\}$. b) x-axis: $f(x)=\frac{e^{x}}{x-1} \stackrel{!}{=} 0 \Rightarrow e^{x!} \stackrel{y}{ \pm} 0$ wo solution \Rightarrow no intercept with x-axis.

$$
\text { Y-axis: } f(0)=\frac{e^{0}}{-1}=-1 \text { is the } y \text {-axis intercept. }
$$

c) Since $\lim _{x \rightarrow-\infty} f(x)=0$, the line $y=0$ is a horizoutd asymptote.
d) Since $\lim _{\substack{x \rightarrow 1 \\ x>0}} f(x)=\infty$ (and $\lim _{\substack{x \rightarrow 1 \\ x<0}} f(x)=-\infty$), the vortical line

$$
x>0
$$

$$
x<0
$$

Exam, Page 8 of 14
e) According to the quotient rule:

$$
f^{\prime}(x)=\frac{e^{x}(x-1)-e^{x} \cdot 1}{(x-1)^{2}}=\frac{e^{x}(x-2)}{(x-1)^{2}}
$$

$$
f^{\prime}(x)=0 \Leftrightarrow x=2
$$

$f^{\prime}(x)<0$ for $x<2 \Rightarrow$ here f is decreasing
$f^{\prime}(x)>0$ for $x>2 \Rightarrow$ here f is increasing
\Rightarrow at $x=2$ there is a local minimum

$$
\begin{aligned}
f) f^{\prime \prime}(x) & =\frac{\left(e^{x}(x-2)+e^{x}\right)(x-1)^{2}-e^{x}(x-2) 2(x-1)}{(x-1)^{4}} \\
& =\frac{e^{x}}{(x-1)^{3}}((x-2+1)(x-1)-2(x-2)) \\
& =e^{x} \frac{\left(x^{2}-4 x+5\right)}{(x-1)^{3}}
\end{aligned}
$$

Note: the zens of $x^{2}-4 x+5$ are $x_{ \pm}=2 \pm \sqrt{-1}=2 \pm i$
\Rightarrow there are no inflection points. Also:

- for $x<1$ we have $f^{\prime \prime}(x)<0$, so here f is concave down.
- for $x>1$ we have $f^{\prime \prime}(x)>0$, so here f is concave up.

14. (25 points)

4 (a) For a matrix $A \in M(n \times n)$, give one equivalent statement to "The inverse of A, i.e., a matrix A^{-1} such that $A^{-1} A=\mathbb{1}$, exists".

10
(b) Find the inverse of
$A=\left(\begin{array}{ccc}1 & 2 & 0 \\ 1 & 1 & 1 \\ 2 & 0 & -1\end{array}\right)$ using row operations as in the lecture.
4 (c) Solve the equation $A x=b$ with $b=(1,2,1)^{T}$.

3 (d) What are the values for the Rank and Nullity of A ? Briefly explain your answer.

4 (e) Now consider the matrix $B=\left(\begin{array}{lll}1 & 2 & 4 \\ 1 & 1 & 2 \\ 2 & 0 & 0\end{array}\right)$, i.e., we have changed the last column in A.
What are the values for the Rank and Nullity of B ? Briefly explain your answer.

14 a) Multiple solutions are possible:
"A has full rank (or rank)"
"All rows (or columns) arelinearly independent"
"All pivots exist $\neq 0$ "
"The determinant of $A \quad \operatorname{det}(A) \neq 0$ " (we did not cover this

These are not the only possible in the lecture) solutions.

$$
\begin{aligned}
& \text { i) }\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
2 & 0 & -1 & 0 & 0 & 1
\end{array}\right) \xrightarrow[R 3 E R 3-2 R 1]{R 2 E R 2-R 1}\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & -1 & 1 & 0 \\
0 & -4 & -1 & -2 & 0 & 1
\end{array}\right) \\
& \xrightarrow{R 3 \& R 3-4 R 2}\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & -1 & 1 & 0 \\
0 & 0 & -5 & 2 & -4 & 1
\end{array}\right) \xrightarrow[R 2 \&-R 2]{\xrightarrow[R]{2}-\frac{R 3}{5}}\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & -1 & 0 \\
0 & 0 & 1 & -\frac{2}{5} & \frac{4}{5} & -\frac{1}{5}
\end{array}\right) \\
& \xrightarrow{R 2 \Leftarrow R 2+R 3}\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & \frac{3}{5} & -\frac{1}{5} & -\frac{1}{5} \\
0 & 0 & 1 & -\frac{2}{5} & \frac{4}{5} & -\frac{1}{5}
\end{array}\right) \xrightarrow{R 1 \& R 1-2 R 2}\left(\begin{array}{ccc|ccc}
11 & 0 & 0 & -\frac{1}{5} & \frac{2}{5} & \frac{2}{5} \\
0 & 1 & 0 & \frac{3}{5} & -\frac{1}{5} & -\frac{1}{5} \\
0 & 0 & 1 & -\frac{2}{5} & \frac{4}{5} & -\frac{1}{5}
\end{array}\right)
\end{aligned}
$$

$A^{-1}=\left(\begin{array}{ccc}-\frac{1}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{3}{5} & -\frac{1}{5} & -\frac{-1}{5} \\ -\frac{2}{5} & \frac{4}{5} & -\frac{1}{5}\end{array}\right)$. We can check $A^{-1} \cdot A$:

$$
\begin{aligned}
\hat{\jmath}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
3 & -1 & -1 \\
-2 & 4 & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 0 \\
1 & 1 & 1 \\
2 & 0 & -1
\end{array}\right) & =\frac{1}{5}\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } A x=b \Rightarrow x=A^{-1} b \\
& \Rightarrow \frac{1}{5}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
3 & -1 & -1 \\
-2 & 4 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=\frac{1}{5}\left(\begin{array}{l}
5 \\
0 \\
5
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=x\binom{\text { We can check }}{A x=\binom{1}{1}=b}
\end{aligned}
$$

d) Rank of A is 3 and Nullity is 0 . As the matrix is invertible, i.e. A^{-1} exists, $\operatorname{rank}(A)$ has to be full, i.e. 3. Rank-Nullity-Theorem tells us, that the mellity has to be O as $\operatorname{rank}(A)+\operatorname{nullity}(A)=3$
(14) e) We can see that the last two columns of are now linearly dependent. That means they contain "the same information" and therefore the $\operatorname{rank}(B)=2$ rather than 3. Rank-NullityTheorem tells us that $\operatorname{rank}(B)$-mellity $(B)=3$ $\Rightarrow \quad$ milit $(B)=1$

