Week 1: PreFunctions

1. MULTI Single

Find the (complex) roots of the polynomial

$$p(x) = x^2 + 4x + 13$$

(a) $x_1 = +2 + 3i, x_2 = +2 - 3i$ (b) $x_1 = -3 + 2i, x_2 = -3 - 2i$ (c) $x_1 = +3 - 2i, x_2 = +3 + 2i$ (d) $x_1 = -2 - 3i, x_2 = -2 + 3i$

2. MULTI Single

Let p(x) be a polynomial of degree n with arbitrary complex coefficients. Which of the following is true?

- (a) If $p(x) = c(x \alpha_1)(x \alpha_2)...(x \alpha_n)$ with $\alpha_1, ..., \alpha_n \in \mathbb{R}$, then the roots of p(x) can be real and also imaginary.
- (b) p(x) has exactly *n* roots (considering multiplicities)
- (c) p(x) can have no roots
- (d) If z is a root, then its complex conjugate is z^* is also a root

3. Multi Single

Find all the values of the parameter λ for which the equation

$$2x^2 - \lambda x + \lambda = 0$$

has no real solutions.

$$\begin{array}{ll} (a) \ \lambda \in \{0,8\} \\ (b) \ \lambda \in (0,8) \\ (c) \ \lambda \in (-\infty,0) \cup (8,\infty) \\ (d) \ \lambda \in (-8,0) \end{array}$$

4. Multiple

The number $5.21\overline{37}$ is:

- (a) an integer
- (b) a real number
- (c) a rational number
- (d) a natural number
- 5. MULTI Single

Assuming that z = a + bi is a complex number, compute real and imaginary part of $\frac{1}{z^2}$

(a)
$$\operatorname{Re}\left(\frac{1}{z^2}\right) = \frac{a^2 - b^2}{(a^2 - b^2)^2}, \operatorname{Im}\left(\frac{1}{z^2}\right) = \frac{2ab}{(a^2 - b^2)^2}$$

(b) $\operatorname{Re}\left(\frac{1}{z^2}\right) = \frac{a^2 - b^2}{(a^2 + b^2)^2}, \operatorname{Im}\left(\frac{1}{z^2}\right) = \frac{-2ab}{(a^2 + b^2)^2}$

(c)
$$\operatorname{Re}\left(\frac{1}{z^2}\right) = \frac{a^2 + b^2}{(a^2 + b^2)^2}, \operatorname{Im}\left(\frac{1}{z^2}\right) = \frac{-2ab}{(a^2 + b^2)^2}$$

(d) $\operatorname{Re}\left(\frac{1}{z^2}\right) = \frac{a^2 + b^2}{(a^2 + b^2)^2}, \operatorname{Im}\left(\frac{1}{z^2}\right) = \frac{2ab}{(a^2 + b^2)^2}$

6. MULTI Single

Consider $v, w \in \mathbb{C}$. Which of the following is NOT true?

(a)
$$(v^*)^m + (w^*)^n = (v^m + w^n)^*$$
 for $m, n \in \mathbb{N}$
(b) $v^* + w^* = (v + w)^*$
(c) $v^{-1} = \frac{(v^*)^{-1}}{|v|^2}$ (with $|v| := \sqrt{v \cdot v^*}$)
(d) $v^* \cdot w^* = (v \cdot w)^*$

7. MULTI Single

Let p(x) be a polynomial of degree n with **real** coefficients. Which of the following is true?

- (a) p(x) can have less than n complex roots
- (b) If p(x) is odd, it can have no roots
- (c) p(x) has *n* distinct real roots
- (d) If z is a root, then its complex conjugate is z^* is also a root
- 8. MULTI Single

Compute
$$\left|\frac{1+i}{2-i}\right|$$
.
(a) $\left|\frac{1+i}{2-i}\right| = \sqrt{\frac{2}{3}}$
(b) $\left|\frac{1+i}{2-i}\right| = \frac{2}{5}$
(c) $\left|\frac{1+i}{2-i}\right| = \sqrt{\frac{2}{5}}$
(d) $\left|\frac{1+i}{2-i}\right| = \frac{2}{3}$

9. MULTI Single

Which of the following is equal to \sqrt{i} ?

(a) $\frac{1-i}{\sqrt{2}}$ (b) *i* (c) $\frac{1+i}{\sqrt{2}}$ (d) 1-i

10. MULTI Single

Which of the following does not describe the rational numbers \mathbb{Q} ?

(a)
$$\mathbb{Q} = \left\{ \frac{n}{m} \mid n, m \in \mathbb{N} \right\}$$

(b) $\mathbb{Q} = \left\{ \frac{n}{m} \mid n \in \mathbb{Z} \text{ and } m \in \mathbb{N} \right\}$
(c) $\mathbb{Q} = \left\{ \frac{n}{m} \mid n, m \in \mathbb{N} \right\} \cup \left\{ \frac{-n}{m} \mid n, m \in \mathbb{N} \right\} \cup \{0\}$
(d) $\mathbb{Q} = \left\{ \frac{n}{m} \mid n, m \in \mathbb{Z} \text{ and } m \neq 0 \right\}$

Total of marks: 10