Week 10: ODEs

1. Nsuri single

Solve $\frac{\mathrm{d} y}{\mathrm{~d} t}=y+1$ with initial condition $y(0)=1$.
(a) $y(t)=1$
(b) $y(t)=3 e^{t}-1$
(c) $y(t)=3 e^{t}-2$
(d) $y(t)=2 e^{t}-1$
2. NNum Single

Solve $\frac{\mathrm{d} y}{\mathrm{~d} t}=-2 y t^{2}$ with initial condition $y(0)=2$.
(a) $y(t)=3 e^{-t^{3}}-1$
(b) $y(t)=2 e^{-t^{3}}$
(c) $y(t)=e^{-\frac{t^{3}}{3}}+1$
(d) $y(t)=2 e^{-\frac{2 t^{3}}{3}}$
3. mult single

Solve $\frac{\mathrm{d} y}{\mathrm{~d} x}-3 e^{x}=y e^{x}$. (Note: A, C are constants in the answers below.)
(a) $y=3^{e^{x}}-3+C$
(b) $y=A e^{e^{x}}-3$
(c) $y=e^{e^{x}}-3+C$
(d) $y=A e^{3 e^{x}}$
4. Nvirit Single

Solve $\frac{\mathrm{d} y}{\mathrm{~d} x}=y+x-1$. (Note: A, C are constants in the answers below.)
(a) $y=A e^{x}-x-1$
(b) $y=e^{x}-x$
(c) $y=A e^{x}-x$
(d) $y=e^{x}-x+C$
5. sulm single

For each of the following equations, determine all the equilibrium points (where $y^{\prime}(x)=0$) and classify each as stable (y^{\prime} changes sign from positive to negative at x or unstable (y^{\prime} changes sign from negative to positive at x).

- $y_{1}^{\prime}=y_{1}-y_{1}^{2}$
- $y_{2}^{\prime}=y_{2}\left(y_{2}-1\right)\left(y_{2}-2\right)$
- $y_{3}^{\prime}=e^{y_{3}}-1$
(a) $y_{1}=0$ (unstable), $y_{1}=1$ (stable), $y_{2}=0,2$ (unstable), $y_{2}=1$ (stable), $y_{3}=0$ (stable)
(b) $y_{1}=0$ (unstable), $y_{1}=1$ (stable), $y_{2}=0,2$ (unstable), $y_{2}=1$ (stable), $y_{3}=0$ (unstable)
(c) $y_{1}=1$ (unstable), $y_{1}=0$ (stable), $y_{2}=1$ (unstable), $y_{2}=0,2$ (stable), $y_{3}=0$ (stable)
(d) $y_{1}=1$ (unstable), $y_{1}=0$ (stable), $y_{2}=1,2$ (unstable), $y_{2}=0$ (stable), $y_{3}=0$ (stable)

6.

Multi Single
What are the transversal oscillation frequencies ω of a string whose endpoints are fixed $(y(t, x=0)=y(t, x=a)=0$, see the definition of y below)? Note that by denoting deviation of a string from $y=0$ along $x=\tilde{x}$ at time t by $y(t, \tilde{x})$, and using Newton's II law with the small oscillations approximation as well as assuming that all the points on a string oscillate in phase, one obtains the following equation of motion for the spatial part $y(x)$ of $y(t, x)=y(x) \sin (\omega t+\varphi)$:

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\alpha \omega^{2} y
$$

(a) $\omega=\sqrt{\alpha}\left[\frac{\pi k}{a}\right]$ where $k \in \mathbb{N}_{0}=\{0,1,2,3, \ldots\}$
(b) $\omega=\frac{1}{\sqrt{\alpha}}\left[\frac{\pi k}{a}\right]$ where $k \in \mathbb{N}_{0}=\{0,1,2,3, \ldots\}$
(c) $\omega=\frac{1}{\sqrt{\alpha}}\left[\frac{\pi k}{a}\right]$ where $k \in \mathbb{N}=\{1,2,3, \ldots\}$
(d) $\omega=\sqrt{\alpha}\left[\frac{\pi k}{a}\right]$ where $k \in \mathbb{N}=\{1,2,3, \ldots\}$
7. NuTri single

Find the solution to the equation $\hat{a} \psi(x)=0$, where the action of the operator \hat{a} is given by $\hat{a}:=\frac{1}{\sqrt{2}}\left(x+\frac{\mathrm{d}}{\mathrm{d} x}\right)$ and $\psi(x)$ is a function of x.
Remark: This is the ground-state solution to the Quantum Harmonic Oscillator in physics.
(a) $A \tanh x$
(b) $A \cos (b \cdot x)$
(c) $A e^{-x}$
(d) $A e^{-\frac{x^{2}}{2}}$
8.

Mutri Single

Consider a fly whose x coordinate changes over time with the equation of motion given by $\dot{x}=\sin (x)$, where $\dot{x} \equiv \frac{\mathrm{~d} x}{\mathrm{~d} t}$.
If its initial position is given by $x_{0}=\pi / 4$, what will happen to the fly?
Hint: Integrating $\frac{1}{\sin x}$ is not necessary for finding the solution.
(a) It will steadily move towards the right until it reaches π
(b) It will diverge towards infinity
(c) It will accelerate towards the right until it reaches $\frac{\pi}{2}$ and then slow down until finally reaching π
(d) Its position will oscillate indeterminately
9. Nutri Single

The rate of change of the volume of a spherical snowball that is melting is proportional to its area. What is the equation describing the radius of the snowball as a function of time?
(a) $r(t)=r_{0} \cdot e^{-c t}$
(b) $r(t)=r_{0}-\frac{5}{2}(c t)^{\frac{5}{2}}$
(c) $r(t)=r_{0}-c t$
(d) $r(t)=r_{0}-\sqrt{c t}$
10. Mutit Single

What is the angle (in radian, i.e., where 360° corresponds to 2π) between the vectors

$$
\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

and

$$
\left[\begin{array}{c}
3 \\
7 \\
17
\end{array}\right] ?
$$

(a) 0
(b) π
(c) $\frac{\pi}{2}$
(d) $\frac{\pi}{4}$

Total of marks: 10

