Week 11: Vectors

1. sulm single

A line is given by $\vec{r}=\lambda \vec{a}+\vec{b}$, with $\vec{a}=(1,-1,4)^{T}$ and $\vec{b}=(4,5,6)^{T}$, while the equation of a plane is given by $-2 x+2 y+z=17$. What are the coordinates of the point P where the line and plane intersect?
(a) $P=(3,3,17)$
(b) $P=(-1,4,7)$
(c) The line and the plane intersect infinitely many times
(d) The line and the plane do not intersect
2. Nutri Single

What is the equation of the hyperplane, given by $\left[\begin{array}{l}t \\ x \\ y \\ z\end{array}\right]=\vec{p}_{0}+\alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}$ with $\vec{p}_{0}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], \vec{a}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right], \vec{b}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right], \vec{c}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right], \alpha, \beta, \gamma \in \mathbb{R}$
(a) $t+x-y+z-1=0$
(b) $-t-x-y+z+1=0$
(c) $t+x-y-z-1=0$
(d) $-t-x-y-z+1=0$
3. Nvurn Single

Find the cross product $\vec{u} \times \vec{v}$ of $\vec{u}=\langle 3,2,-1\rangle, \vec{v}=\langle 1,1,0\rangle$
(a) $\langle-6,4,2\rangle$
(b) $\langle 1,-1,1\rangle$
(c) $\langle-1,-1,5\rangle$
(d) $\langle 6,4,2\rangle$
4. sutir single

Find the unit vector along the direction of the cross product $\vec{u} \times \vec{v}$ of $\vec{u}=\langle 7,-1,3\rangle, \vec{v}=$ $\langle 2,0,-2\rangle$.
(a) $\frac{1}{408}\langle 2,20,2\rangle$
(b) $\frac{1}{\sqrt{108}}\langle-2,-10,2\rangle$
(c) $\frac{1}{\sqrt{408}}\langle 2,20,2\rangle$
(d) $\frac{1}{108}\langle-2,-10,2\rangle$
5. MULTI Single

Let $\epsilon_{i j k}= \begin{cases}1 & \text { if }(i j k)=(123),(231), \text { or (312) } \\ -1 & \text { if }(i j k)=(132),\left(\begin{array}{ll}2 & 1), \\ 0 & \text { or (213) } \\ 0 & \text { else }\end{array}\right.\end{cases}$
Consider $\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$. Which of the following is equivalent to the k th component of $\vec{u} \times \vec{v}$
(a) $[\vec{u} \times \vec{v}]_{k}=\sum_{i, j=1}^{3} \epsilon_{i j k}\left(u_{i} v_{j}-v_{i} u_{j}\right)$
(b) $[\vec{u} \times \vec{v}]_{k}=\sum_{i, j=1}^{3} \epsilon_{i j k} u_{i} v_{j}$
(c) $[\vec{u} \times \vec{v}]_{k}=\sum_{i, j=1}^{3} \epsilon_{i j k} v_{i} u_{j}$
(d) $[\vec{u} \times \vec{v}]_{k}=\sum_{i, j=1}^{3} \epsilon_{i j k}\left(u_{i} v_{j}+v_{i} u_{j}\right)$
6. Nutri single

Find a basis for $\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, 7 x+2 y-5 z=0\right\} \subset \mathbb{R}^{3}$.
(a) $\left[\begin{array}{l}5 \\ 0 \\ 7\end{array}\right],\left[\begin{array}{c}10 \\ 5 \\ 14\end{array}\right]$
(b) $\left[\begin{array}{c}5 \\ 0 \\ -7\end{array}\right],\left[\begin{array}{c}0 \\ -5 \\ 2\end{array}\right]$
(c) $\left[\begin{array}{l}5 \\ 0 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 5 \\ 2\end{array}\right]$
(d) $\left[\begin{array}{c}5 \\ 0 \\ -7\end{array}\right],\left[\begin{array}{l}0 \\ 5 \\ 2\end{array}\right]$
7. Mutri Single

Find a basis for $\left\{\left.\left[\begin{array}{c}3 a \\ -7 a \\ 11 a\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, a \in \mathbb{R}\right\} \subset \mathbb{R}^{3}$.
(a) $\left[\begin{array}{l}4 \\ 7 \\ 4\end{array}\right]$
(b) $\left[\begin{array}{c}-3 \\ -7 \\ 11\end{array}\right]$
(c) $\left[\begin{array}{c}51 \\ -118 \\ 187\end{array}\right]$
(d) $\left[\begin{array}{c}15 \\ -35 \\ 55\end{array}\right]$
8. Nuti single

Which of the following is not a basis for the space of all cubic polynomials $P_{3}(\mathbb{R})$?
(a) $\mathfrak{B}=\left\{x^{3}, x^{2}, x, 1\right\}$
(b) $\mathfrak{B}=\left\{x^{3}-x^{2}, x^{2}-x, x-1,1\right\}$
(c) $\mathfrak{B}=\left\{x^{3}-x^{2}, x^{3}-x, x^{2}-x, x^{3}-1\right\}$
(d) $\mathfrak{B}=\left\{x^{3}+x^{2}+x+1,(x-6)^{2}, x-10,1\right\}$
9. Nuti single

Does the set of all positive reals together with the following addition and multiplication by scalar $\left(\mathbb{R}_{+}, \tilde{+}, \tilde{\bullet}\right)$ form a vector space over \mathbb{R} (with the scalars $c \in \mathbb{R}$):

$$
v_{1} \tilde{+} v_{2} \stackrel{\text { def }}{=} v_{1} \cdot v_{2} ; c \tilde{\cdot} v_{2} \stackrel{\text { def }}{=} c \cdot v_{2}
$$

(a) $\left(\mathbb{R}_{+}, \tilde{+}, \tilde{\cdot}\right)$ is a vector space over \mathbb{R}
(b) $\left(\mathbb{R}_{+}, \tilde{+}, \tilde{r}\right)$ is not a vector space over \mathbb{R}
10. MULTI Single

Is the set of all polynomials in one variable with real coefficients of degree 10 a vector space over \mathbb{R} (let's denote this space by $\mathbb{R}[X]^{10}$)? (Addition and multiplication by scalar are defined as usual).
(a) $\mathbb{R}[X]^{10}$ is not a vector space over \mathbb{R}
(b) $\mathbb{R}[X]^{10}$ is a vector space over \mathbb{R}

Total of marks: 10

