Week 11: Vectors

1.

A line is given by $\vec{r}=\lambda \vec{a}+\vec{b}$, with $\vec{a}=(1,-1,4)^{T}$ and $\vec{b}=(4,5,6)^{T}$, while the equation of a plane is given by $-2 x+2 y+z=17$. What are the coordinates of the point P where the line and plane intersect?
(a) The line and the plane do not intersect (100%)
(b) $P=(-1,4,7)$
(c) $P=(3,3,17)$
(d) The line and the plane intersect infinitely many times

Consider the vector normal to the plane $\vec{n}=(-2,2,1)^{T}$.
One can observe $\vec{a} \cdot \vec{n}=1 \cdot(-2)+(-1) \cdot 2+4 \cdot 1=0$. Thus, the line and the plane either do not intersect or intersect infinitely many times.
Analyzing $\lambda=0$ and plugging in the coordinates of the line into the plane equation: $-2 \cdot 4+2 \cdot 5+1 \cdot 6=8 \neq 17$.
Thus, the line and plane do not intersect.
2.

What is the equation of the hyperplane, given by $\left[\begin{array}{l}t \\ x \\ y \\ z\end{array}\right]=\vec{p}_{0}+\alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}$ with $\vec{p}_{0}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], \vec{a}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right], \vec{b}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right], \vec{c}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right], \alpha, \beta, \gamma \in \mathbb{R}$
(a) $-t-x-y+z+1=0(100 \%)$
(b) $-t-x-y-z+1=0$
(c) $t+x-y+z-1=0$
(d) $t+x-y-z-1=0$

Note that $\vec{d}=\left[\begin{array}{l}-1 \\ -1 \\ -1 \\ +1\end{array}\right]$ is perpendicular to $\vec{a}, \vec{b}, \vec{c}$.
This defines the following equation (expanded version of $\vec{d} \cdot\left(\left[\begin{array}{l}t \\ x \\ y \\ z\end{array}\right]-\vec{p}_{0}\right)=0$):

$$
-(t-1)-x-y+z=0 \Leftrightarrow-t-x-y+z+1=0
$$

3.

Multi 1.0 point 0 penalty Single Shuffle

Find the cross product $\vec{u} \times \vec{v}$ of $\vec{u}=\langle 3,2,-1\rangle, \vec{v}=\langle 1,1,0\rangle$
(a) $\langle 1,-1,1\rangle(100 \%)$
(b) $\langle-1,-1,5\rangle$
(c) $\langle-6,4,2\rangle$
(d) $\langle 6,4,2\rangle$

Direct computation

4.

0 Murrt 1.0 point 0 penalty Single Shuffe

Find the unit vector along the direction of the cross product $\vec{u} \times \vec{v}$ of $\vec{u}=\langle 7,-1,3\rangle, \vec{v}=$ $\langle 2,0,-2\rangle$.
(a) $\frac{1}{\sqrt{408}}\langle 2,20,2\rangle(100 \%)$
(b) $\frac{1}{108}\langle-2,-10,2\rangle$
(c) $\frac{1}{408}\langle 2,20,2\rangle$
(d) $\frac{1}{\sqrt{108}}\langle-2,-10,2\rangle$

Direct computation yields:

$$
\vec{u} \times \vec{v}=\left[\begin{array}{c}
2 \\
20 \\
2
\end{array}\right]
$$

Then the norm squared is simply $2^{2}+20^{2}+2^{2}=408$. Thus, we take the square root to find the norm and divide by it to normalize.
5.

| MuITI |
| :--- | :--- | :--- |

Let $\epsilon_{i j k}= \begin{cases}1 & \text { if }(i j k)=(123),(231), \text { or (312) } \\ -1 & \text { if }(i j k)=(132),(321), \text { or (213) } \\ 0 & \text { else }\end{cases}$
Consider $\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$. Which of the following is equivalent to the k th component of $\vec{u} \times \vec{v}$
(a) $[\vec{u} \times \vec{v}]_{k}=\sum_{i, j=1}^{3} \epsilon_{i j k} u_{i} v_{j}(100 \%)$
(b) $[\vec{u} \times \vec{v}]_{k}=\sum_{i, j=1}^{3} \epsilon_{i j k} v_{i} u_{j}$
(c) $[\vec{u} \times \vec{v}]_{k}=\sum_{i, j=1}^{3} \epsilon_{i j k}\left(u_{i} v_{j}-v_{i} u_{j}\right)$
(d) $[\vec{u} \times \vec{v}]_{k}=\sum_{i, j=1}^{3} \epsilon_{i j k}\left(u_{i} v_{j}+v_{i} u_{j}\right)$

Direct computation yields:

$$
\vec{u} \times \vec{v}=\left[\begin{array}{l}
u_{2} v_{3}-u_{3} v_{2} \\
u_{3} v_{1}-u_{1} v_{3} \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]=\left[\begin{array}{l}
\epsilon_{231} u_{2} v_{3}+\epsilon_{321} u_{3} v_{2}+0 \\
\epsilon_{312} u_{3} v_{1}+\epsilon_{132} u_{1} v_{3}+0 \\
\epsilon_{123} u_{1} v_{2}+\epsilon_{213} u_{2} v_{1}+0
\end{array}\right]=\sum_{i, j=1}^{3}\left[\begin{array}{l}
\epsilon_{i j 1} u_{i} v_{j} \\
\epsilon_{i j 2} u_{i} v_{j} \\
\epsilon_{i j 3} u_{i} v_{j}
\end{array}\right]
$$

Where the +0 represents all the other $\epsilon_{i j k}$ terms.
6.

Find a basis for $\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, 7 x+2 y-5 z=0\right\} \subset \mathbb{R}^{3}$.
(a) $\left[\begin{array}{l}5 \\ 0 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 5 \\ 2\end{array}\right](100 \%)$
(b) $\left[\begin{array}{c}5 \\ 0 \\ -7\end{array}\right],\left[\begin{array}{l}0 \\ 5 \\ 2\end{array}\right]$
(c) $\left[\begin{array}{c}5 \\ 0 \\ -7\end{array}\right],\left[\begin{array}{c}0 \\ -5 \\ 2\end{array}\right]$
(d) $\left[\begin{array}{l}5 \\ 0 \\ 7\end{array}\right],\left[\begin{array}{c}10 \\ 5 \\ 14\end{array}\right]$

The plane is spanned by vectors, perpendicular to the normal vector $\vec{n}=\left[\begin{array}{c}7 \\ 2 \\ -5\end{array}\right]$
For a basis take a vector, perpendicular to \vec{n}, e.g. $\vec{v}_{1}=\left[\begin{array}{l}5 \\ 0 \\ 7\end{array}\right]$, and add another one which is not proportional to the first one (to have 2 linearly independent vectors which form a basis of a plane), e.g. $\vec{v}_{2}=\left[\begin{array}{l}0 \\ 5 \\ 2\end{array}\right]$
7.
0 MULTI 1.0 point 0 penalty Single Shuffle

Find a basis for $\left\{\left.\left[\begin{array}{c}3 a \\ -7 a \\ 11 a\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, a \in \mathbb{R}\right\} \subset \mathbb{R}^{3}$.
(a) $\left[\begin{array}{c}15 \\ -35 \\ 55\end{array}\right](100 \%)$
(b) $\left[\begin{array}{c}51 \\ -118 \\ 187\end{array}\right]$
(c) $\left[\begin{array}{l}-3 \\ -7 \\ 11\end{array}\right]$
(d) $\left[\begin{array}{l}4 \\ 7 \\ 4\end{array}\right]$

A line is spanned by one vector (such that any point on the line is proportional to the basis vector), thus we can take e.g. $\left[\begin{array}{c}3 \\ -7 \\ 11\end{array}\right]$ to be a basis vector, or any other multiple of it, e.g. $\left[\begin{array}{c}3 \\ -7 \\ 11\end{array}\right] \cdot 5=\left[\begin{array}{c}15 \\ -35 \\ 55\end{array}\right]$
8.

0 Mutrit 1.0 point 0 penalty Single Shuffe

Which of the following is not a basis for the space of all cubic polynomials $P_{3}(\mathbb{R})$?
(a) $\mathfrak{B}=\left\{x^{3}-x^{2}, x^{3}-x, x^{2}-x, x^{3}-1\right\}(100 \%)$
(b) $\mathfrak{B}=\left\{x^{3}, x^{2}, x, 1\right\}$
(c) $\mathfrak{B}=\left\{x^{3}-x^{2}, x^{2}-x, x-1,1\right\}$
(d) $\mathfrak{B}=\left\{x^{3}+x^{2}+x+1,(x-6)^{2}, x-10,1\right\}$

We can see: $(-1)\left(x^{3}-x^{2}\right)+(1)\left(x^{3}-x\right)+(-1)\left(x^{2}-x\right)=-x^{3}+x^{2}+x^{3}-x-x^{2}+x=0$ This means that three of the basis vectors are linearly dependent, and thus cannot be a basis.
9.
1 surit 1.0 point 0 penalty Single Shuffe

Does the set of all positive reals together with the following addition and multiplication by scalar $\left(\mathbb{R}_{+}, \tilde{+}, \tilde{\circ}\right)$ form a vector space over \mathbb{R} (with the scalars $c \in \mathbb{R}$):

$$
v_{1} \tilde{+} v_{2} \stackrel{\text { def }}{=} v_{1} \cdot v_{2} ; \quad c \tilde{\sim} v_{2} \stackrel{\text { def }}{=} c \cdot v_{2}
$$

(a) $\left(\mathbb{R}_{+}, \tilde{\sim}, \tilde{f}\right)$ is not a vector space over $\mathbb{R}(100 \%)$
(b) $\left(\mathbb{R}_{+}, \tilde{+}, \tilde{\bullet}\right)$ is a vector space over \mathbb{R}

The space is not closed under multiplication by a scalar, note e.g. that:

$$
-1 \approx 1=-1 \notin \mathbb{R}_{+}
$$

Thus, $\left(\mathbb{R}_{+}, \tilde{+}, \dot{\ominus}\right)$ is not a vector space over \mathbb{R}
10.

| MULTI | 1.0 point 0 penalty Single Shuffle |
| :--- | :--- | :--- |

Is the set of all polynomials in one variable with real coefficients of degree 10 a vector space over \mathbb{R} (let's denote this space by $\mathbb{R}[X]^{10}$)? (Addition and multiplication by scalar are defined as usual).
(a) $\mathbb{R}[X]^{10}$ is not a vector space over $\mathbb{R}(100 \%)$
(b) $\mathbb{R}[X]^{10}$ is a vector space over \mathbb{R}

Elements of the described set are not closed under addition, take e.g.

$$
\left[x^{10}\right]+\left[-x^{10}+x\right]=[x] \notin \mathbb{R}[X]^{10}
$$

Thus, $\mathbb{R}[X]^{10}$ is not a vector space
Total of marks: 10

