Week 12: Matrices

1. Nuvit Single

Calculate the matrix product:

$$
\left[\begin{array}{lll}
1 & 2 & 9 \\
3 & 4 & 5 \\
6 & 7 & 8
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]=?
$$

(a) $\left[\begin{array}{ccc}-6 & 10 & 8 \\ 2 & 5 & 4 \\ 5 & 9 & 7\end{array}\right]$
(b) $\left[\begin{array}{ccc}-6 & 9 & 8 \\ 2 & 6 & 4 \\ 5 & 9 & 8\end{array}\right]$
(c) $\left[\begin{array}{ccc}-6 & 9 & 8 \\ 2 & 5 & 4 \\ 5 & 9 & 8\end{array}\right]$
(d) $\left[\begin{array}{ccc}-6 & 10 & 8 \\ 2 & 6 & 4 \\ 5 & 9 & 7\end{array}\right]$
2. MULTI Single

Let

$$
\mathcal{R}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Which is the inverse of \mathcal{R}
(a) $\left[\begin{array}{cc}-\cos \theta & -\sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$
(b) $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
(c) $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
(d) $\left[\begin{array}{cc}-\cos \theta & \sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]$
3. Nvuri single

Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] B=\left[\begin{array}{ll}
2 & 0 \\
2 & 2
\end{array}\right] C=\left[\begin{array}{ll}
3 & 3 \\
0 & 3
\end{array}\right]
$$

Calculate $A \cdot B \cdot C$
(a) $\left[\begin{array}{ll}6 & 6 \\ 6 & 6\end{array}\right]$
(b) $\left[\begin{array}{ll}12 & 18 \\ 12 & 18\end{array}\right]$
(c) $\left[\begin{array}{cc}24 & 24 \\ 2 & 6\end{array}\right]$
(d) $\left[\begin{array}{cc}6 & 6 \\ 12 & 18\end{array}\right]$
4.

Multr Single
Let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \quad B=\left[\begin{array}{cc}
99 & 0 \\
99 & 99 \\
99 & 0 \\
99 & 99
\end{array}\right] C=\left[\begin{array}{l}
3 \\
0 \\
3
\end{array}\right]
$$

Which of the following is a valid matrix multiplication?
(a) $A^{T} \cdot B^{T} \cdot C$
(b) $C^{T} \cdot B^{T} \cdot A^{T}$
(c) $B \cdot A^{T} \cdot C$
(d) $A \cdot B \cdot C$
5. MULTI Single

Which of the following is equivalent to $(A \cdot B \cdot C)^{T}$
(a) $A^{T} \cdot B^{T} \cdot C^{T}$
(b) $C^{T} \cdot B^{T} \cdot A^{T}$
(c) $B^{T} \cdot C^{T} \cdot A^{T}$
(d) $C^{T} \cdot B^{T} \cdot A^{T}$
6. sNumi Single

Let A be a (3×4) matrix, and B be a matrix such that $A^{T} \cdot B$ and $B \cdot A^{T}$ are both defined. What are the dimensions of B
(a) (4×3)
(b) (4×4)
(c) (3×4)
(d) (3×3)
7. suurt single

Solve the following system of linear equations:

$$
\begin{aligned}
x_{1}+3 x_{2}-5 x_{3} & =4 \\
x_{1}+4 x_{2}-8 x_{3} & =7 \\
-3 x_{1}-7 x_{2}+9 x_{3} & =-6
\end{aligned}
$$

(a)

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-5 \\
3 \\
0
\end{array}\right]+\lambda\left[\begin{array}{c}
4 \\
-3 \\
1
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-10 \\
6 \\
0
\end{array}\right]+\lambda\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-10 \\
6 \\
0
\end{array}\right]+\lambda\left[\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right]
$$

(d)

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-5 \\
3 \\
0
\end{array}\right]+\lambda\left[\begin{array}{c}
4 \\
-3 \\
-1
\end{array}\right]
$$

8. Nutri Single

Find α such that following system of linear equations has no solutions:

$$
\begin{aligned}
x_{1}+\alpha x_{2} & =1 \\
x_{1}-x_{2}+3 x_{3} & =-1 \\
2 x_{1}-2 x_{2}+\alpha x_{3} & =-2
\end{aligned}
$$

(a) $\alpha=6$
(b) $\alpha=3$
(c) $\alpha=-1$
(d) $\alpha=1$
9. Nuvit single

Which of the following is true for Homogeneous systems of Linear Equations?
(a) We can always find a solution \vec{a} such that all its components a_{i} are positive
(b) If \vec{a} is a solution, $\exists k \in \mathbb{R}$ such that $k \vec{a}$ is not a solution
(c) If \vec{a} and \vec{b} are both solutions, then $\vec{a}+\vec{b}$ is also a solution
(d) The system might not have a solution
10. Mviri single

Let \vec{a} and \vec{b} be the solution to a system of linear equations $A \vec{x}=\vec{v}$. When is $\vec{a}+\vec{b}$ also a solution?
(a) When $\vec{v}=0$
(b) Never
(c) Always
(d) When $\vec{v} \neq 0$

Total of marks: 10

