Week 12: Matrices

1. MULTI Single

(a)

(b)

(c)

(d)

Let

2.

Calculate the matrix product:

$$\begin{bmatrix} 1 & 2 & 9 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix} = ?$$
(a)
$$\begin{bmatrix} -6 & 10 & 8 \\ 2 & 5 & 4 \\ 5 & 9 & 7 \end{bmatrix}$$
(b)
$$\begin{bmatrix} -6 & 9 & 8 \\ 2 & 6 & 4 \\ 5 & 9 & 8 \end{bmatrix}$$
(c)
$$\begin{bmatrix} -6 & 9 & 8 \\ 2 & 5 & 4 \\ 5 & 9 & 8 \end{bmatrix}$$
(d)
$$\begin{bmatrix} -6 & 10 & 8 \\ 2 & 6 & 4 \\ 5 & 9 & 7 \end{bmatrix}$$
(MURT) Single
Let
$$\mathcal{R} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

Which is the inverse of \mathcal{R}

(a)
$$\begin{bmatrix} -\cos\theta & -\sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$$

(b)
$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

(c)
$$\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

(d)
$$\begin{bmatrix} -\cos\theta & \sin\theta \\ -\sin\theta & -\cos\theta \end{bmatrix}$$

3.
$$\boxed{\text{MULTI}}$$
 Single

Let

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix} C = \begin{bmatrix} 3 & 3 \\ 0 & 3 \end{bmatrix}$$

Calculate $A \cdot B \cdot C$

(a)
$$\begin{bmatrix} 6 & 6 \\ 6 & 6 \end{bmatrix}$$

(b) $\begin{bmatrix} 12 & 18 \\ 12 & 18 \\ 12 & 18 \end{bmatrix}$
(c) $\begin{bmatrix} 24 & 24 \\ 2 & 6 \end{bmatrix}$

(d)
$$\begin{bmatrix} 6 & 6\\ 12 & 18 \end{bmatrix}$$

4. MULTI Single

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} B = \begin{bmatrix} 99 & 0 \\ 99 & 99 \\ 99 & 0 \\ 99 & 99 \end{bmatrix} C = \begin{bmatrix} 3 \\ 0 \\ 3 \end{bmatrix}$$

Which of the following is a valid matrix multiplication?

- (a) $A^T \cdot B^T \cdot C$ (b) $C^T \cdot B^T \cdot A^T$ (c) $B \cdot A^T \cdot C$ (d) $A \cdot B \cdot C$
- 5. MULTI Single

Which of the following is equivalent to $(A \cdot B \cdot C)^T$

- (a) $A^T \cdot B^T \cdot C^T$ (b) $C^T \cdot B^T \cdot A^T$ (c) $B^T \cdot C^T \cdot A^T$ (d) $C^T \cdot B^T \cdot A^T$
- 6. MULTI Single

Let A be a (3×4) matrix, and B be a matrix such that $A^T \cdot B$ and $B \cdot A^T$ are both defined. What are the dimensions of B

(a) (4×3) (b) (4×4) (c) (3×4) (d) (3×3)

7. Multi Single

Solve the following system of linear equations:

(a)

$$\begin{aligned}
x_1 + 3 x_2 - 5 x_3 &= 4 \\
x_1 + 4 x_2 - 8 x_3 &= 7 \\
-3 x_1 - 7 x_2 + 9 x_3 &= -6
\end{aligned}$$
(b)

$$\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
-5 \\
3 \\
0
\end{bmatrix} + \lambda \begin{bmatrix}
4 \\
-3 \\
1
\end{bmatrix}$$
(b)

(c)

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -10 \\ 6 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$$
(d)

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -5 \\ 3 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} 4 \\ -3 \\ -1 \end{bmatrix}$$

8. MULTI Single

Find α such that following system of linear equations has no solutions:

$$x_1 + \alpha \, x_2 = 1$$
$$x_1 - x_2 + 3 \, x_3 = -1$$
$$2 \, x_1 - 2 \, x_2 + \alpha \, x_3 = -2$$

(a) $\alpha = 6$ (b) $\alpha = 3$ (c) $\alpha = -1$ (d) $\alpha = 1$

9. Multi Single

Which of the following is true for Homogeneous systems of Linear Equations?

- (a) We can always find a solution \vec{a} such that all its components a_i are positive
- (b) If \vec{a} is a solution, $\exists k \in \mathbb{R}$ such that $k\vec{a}$ is not a solution
- (c) If \vec{a} and \vec{b} are both solutions, then $\vec{a} + \vec{b}$ is also a solution
- (d) The system might not have a solution

10. MULTI Single

Let \vec{a} and \vec{b} be the solution to a system of linear equations $A\vec{x} = \vec{v}$. When is $\vec{a} + \vec{b}$ also a solution?

- (a) When $\vec{v} = 0$
- (b) Never
- (c) Always
- (d) When $\vec{v} \neq 0$

Total of marks: 10